ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Rheologica acta 37 (1998), S. 245-255 
    ISSN: 1435-1528
    Keywords: Key words Extrusion ; multiplicity ; slip ; bifurcation analysis ; pressure effects
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: Abstract Various microstructural pictures for slip at polymer/solid interfaces lead to relations which have a region where multiple values of slip velocity are predicted for the same shear stress. This leads to the expectation of multivalued flow curves, which has been verified in specific cases by numerous researchers. We study the effect of pressure dependence on flow curve multiplicity using a simple multivalued slip relation to model the phenomena of hysteresis and spurt flow in polymer extrusion. A continuation technique is used to trace out the boundaries of the region of flow curve multiplicity as pressure drop and die length to diameter (L/D) ratio are changed. Results for Newtonian, shear thinning and viscoelastic constitutive equations show that, despite the multivalued nature of the slip model, multiplicity (and thus hysteresis) is absent at high L/D.  For the sake of completeness, we also carry out time-dependent simulations at constant piston speed taking fluid compressibility into account. These simulations show that oscillations in the pressure drop and exit volumetric flow rate result only if the system is operated in the multiplicity region of the steady state flow curve, in agreement with the results of similar simulations by researchers using various multivalued slip models without pressure dependence. The results demonstrate that a multivalued slip model does not guarantee multiplicity in the flow curve for the constant pressure drop operation, nor oscillations for constant piston speed operation.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2000-11-06
    Print ISSN: 0031-9007
    Electronic ISSN: 1079-7114
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2016-09-01
    Print ISSN: 1757-8981
    Electronic ISSN: 1757-899X
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Institute of Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2001-09-25
    Description: Starting from stationary bifurcations in Couette-Dean flow, we compute stationary nontrivial solutions in the circular Couette geometry for an inertialess finitely extensible nonlinear elastic (FENE-P) dumbbell fluid. These solutions are isolated from the Couette flow branch arising at finite amplitude in saddle-node bifurcations as the Weissenberg number increases. Spatially, they are strongly localized axisymmetric vortex pairs embedded in an arbitrarily long 'far field' of pure Couette flow, and are thus qualitatively, and to some extent quantitatively, similar to the 'diwhirl' (Groisman and Steinberg 1997) and 'flame' patterns (Baumert and Muller 1999) observed experimentally. For computationally accessible parameter values, these solutions appear only above the linear instability limit of the Couette base flow, in contrast to the experimental observations. Correspondingly, they are themselves linearly unstable. Nevertheless, extrapolation of the trend in the bifurcation points with increasing polymer extensibility suggests that for sufficiently high extensibility the diwhirls will come into existence before the linear instability, as seen experimentally. Based on the computed stress and velocity fields, we propose a fully nonlinear self-sustaining mechanism for these flows. The mechanism is related to that for viscoelastic Dean flow vortices and arises from a finite-amplitude perturbation giving rise to a locally unstable profile of the azimuthal normal stress near the outer cylinder at the symmetry plane of the vortex pair. The unstable stress profile, in combination with a 'tubeless siphon' effect, nonlinearly sustains the patterns. We propose that these solitary, strongly nonlinear structures comprise fundamental building blocks for complex spatiotemporal dynamics in the flow of elastic liquids.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...