ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2008-06-10
    Print ISSN: 0148-0227
    Electronic ISSN: 2156-2202
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  Journal of Geophysical Research: Oceans, 113 . C06009.
    Publication Date: 2018-04-19
    Description: Laboratory experiments were carried out in a seawater mesocosm tank to investigate the influence of marine phytoplankton growth on air bubble residence time (BRT). Air bubbles of 10–1000 μm in diameter were injected by flushing a water jet into the top of the tank and BRT was determined acoustically. The tank was filled with seawater containing a natural phytoplankton population and growth stimulated by irradiating with artificial fluorescent light. A second experiment was conducted using a monoculture of the diatom Cylindrotheca closterium. BRT and several phytoplankton growth-related parameters (chlorophyll concentration, dissolved inorganic nutrients, dissolved organic carbon (DOC), oxygen saturation and bacteria numbers) as well as the water viscosity were monitored over periods of up to 24 days. BRT showed a statistically significant covariation with oxygen saturation (r = 0.69, α = 0.01 for natural phytoplankton; r = 0.93, α = 0.01 for the Cylindrotheca closterium) and chlorophyll concentration (r = 0.69, α = 0.05 natural phytoplankton; r = 0.76, α = 0.01 Cylindrotheca closterium) during phytoplankton growth periods. Increases in BRT of a factor 〉2 were found during the chlorophyll maximum, when the water was sufficiently supersaturated with oxygen (~〉110%). No clear relationship was evident between BRT and measurements of DOC or water viscosity. Model experiments with highly oxygen-supersaturated water and artificial polysaccharide compounds indicated that oxygen supersaturation alone is not the main factor causing increased BRT during phytoplankton growth, but it is most likely a combination of the degree of gas saturation and the composition of the organic exudates derived from the microalgal population.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...