ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1
    Publication Date: 1996-05-01
    Print ISSN: 0178-4617
    Electronic ISSN: 1432-0541
    Topics: Computer Science , Mathematics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Algorithmica 15 (1996), S. 495-519 
    ISSN: 1432-0541
    Keywords: VLSI-design ; Efficient algorithms ; Channel-routing ; Knock-knee mode ; Layer assignment
    Source: Springer Online Journal Archives 1860-2000
    Topics: Computer Science , Mathematics
    Notes: Abstract In this paper we consider the channel-routing problem in the knock-knee mode. An algorithm is presented to construct a layout that is wirable in only three conducting layers. When the channel consists of top-to-bottom nets only, the layout is optimal with respect to the area. In case there are one-sided nets, the algorithm introduces at most one additional column. The algorithm improves all previously known layout algorithms which either use up toN/2 (N number of nets) additional columns to produce a three-layer wirable layout [6], [11], [12] or construct a layout which might not be three-layer wirable [4], [5], [10], [18]. Using a special kind of segment tree as the basic data structure, the algorithm can be implemented to run inO(N logN) time. Previous algorithms with linear running time use either additional columns [6], [12] or solve only special cases [18], [19]. For any layout constructed by the algorithm (or a slightly modified layout) a three-layer assignment can be constructed in timeO(N) with onlyO(N) vias.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...