ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1365-2958
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Medicine
    Notes: Rhizobium fredii strain USDA257 produces nitrogen-fixing nodules on primitive soybean cultivars such as Peking but fails to nodulate agronomically improved cultivars such as McCall. Transposonmutant 257DH4 has two new phenotypes: it nodulates McCall, and its ability to do so is sensitive to the presence of parental strain U5DA257, i.e. it is subject to competitive nodulation blocking. We have isolated a cosmid containing DNA that corresponds to the site of transposon insertion in 257DH4 and have localized Tn5 on an 8.0 kb EcoRI fragment. The 5596 bp DNA sequence that surrounds the insertion site contains seven open reading frames. Five of these, designated nolBTU, ORF4, and nolV, are closely spaced and of the same polarity. nolWand nolX are of the opposite polarity. The initiation codon for nolW lies 155bp upstream from that of nolB, and it is separated from nolXby 281 bp. The predicted NolT and NolW proteins have putative membrane-spanning regions. The N-terminus of the hypothetical NolW protein also has limited homology to NodH of Rhizobium meliloti, but none of the deduced protein sequences has significant homology to known nodulation gene products. Site-directed mutagenesis with mudll1734 confirms that inactivation of nolB, nolT, nolU, nolV, nolW, or nolX extends host range for nodulation to McCall soybean. This phenotype could not be genetically dissected from sensitivity to competitive nodulation blocking. Expression of nolBTU anti nolX is induced as much as 30-fold by flavonoid signal molecules, even though these genes lack nod-box promoters. Histochemical staining of McCall roots inoculated with nolB–, nolU–, or nolX–lacZ fusions verifies that these genes are expressed continuously from preinfection to the stage of the functional nodule. Although a nolU–ORF4–nolV clone hybridizes to a single 8.0 kb EcoRI fragment from 10 strains of R. fredii and broad-host-range Rhizobium sp. NGR234, hybridizing sequences are not detectable in other rhizobia.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Molecular microbiology 5 (1991), S. 0 
    ISSN: 1365-2958
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Medicine
    Notes: Rhizobium fredii strain USDA257 does not nodulate soybean (Glycine max (L.) Merr.) cultivar McCall. Mutant 257DH5, which contains a Tn5 insert in the bacterial chromosome, forms nodules on this cultivar, but acetylene-reduction activity is absent. We have sequenced the region corresponding to the site of Tn5 insertion in this mutant and find that it lies within a 1176 bp open reading frame that we designate nolC. nolC encodes a protein of deduced molecular weight 43564. Nucleotide sequences homologous to nolC are present in several other Rhizobium strains, as well as Agrobacterium tumefaciens, but not in Pseudomonas syringae pathovar glycinea. nolC lacks significant sequence homology with known genes that function in nodulation, but is 61% homologous to dnaJ, an Escherichia coli gene that encodes a 41 kDa heat-shock protein. Both R. fredii USDA257 and mutant 257DH5 produce heat-shock proteins of 78, 70, 22, and 16kDa. A 4.3kb EcoRI–HindIII subclone containing nolC expresses a single 43 kDa polypeptide in mini-cells. A longer, 9.4kb Eco RI fragment expresses both the 43kDa polypeptide and a 78kDa polypeptide that corresponds in size to that of the largest heat-shock protein. Thus, although nolC has strong sequence homology to dnaJ and appears to be linked to another heat-shock gene, it does not directly function in the heat-shock response.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Molecular microbiology 13 (1994), S. 0 
    ISSN: 1365-2958
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Medicine
    Notes: Symbiotic interactions between rhizobia and legumes are largely controlled by reciprocal signal exchange. Legume roots excrete flavonoids which induce rhizobial nodulation genes to synthesize and excrete lopo-oligosaccharide Nod factors. In turn, Nod factors provoke deformation of the root hairs and nodule primordium formation. Normally, rhizobia enter roots through infection threads in markedly curled root hairs. If Nod factors are responsible for symbiosis-specific root hair deformation, they could also be the signal for entry of rhizobia into legume roots. We tested this hypothesis by adding, at inoculation, NodNGR-factors to signal-production-deficient mutants of the broad-host-range Rhizobium sp. NGR234 and Bradyrhizobium japorticum strain USDA110. Between 10 −7 M and 10−6 M NodNGR factors permitted these NodABC mutants to penetrate, nodulate and fix nitrogen on Vigna unguiculata and Glycine max, respectively. NodNGR factors also allowed Rhizobium fredii strain USDA257 to enter and fix nitrogen on Calopogonium caeruleum, a non-host. Detailed cytological investigations of V. unguiculata showed that the NodABC mutant UGR AnodABC, in the presence of NodNGR factors, entered roots in the same way as the wild-type bacterium. Since infection threads were also present in the resulting nodules, we conclude that Nod factors are the signals that permit rhizobia to penetrate legume roots via infection threads.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1365-2958
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Medicine
    Notes: Transfer of a cosmid containing nodSU from Rhizobium sp. NGR234 to Rhizobium fredii USDA257 expands the host range for nodulation to include the perennial tropical legumes, Leucaena leucocephala and Leucaena diversifolia. Complementation experiments with a series of subclones established that nodS and its associated nod-box promoter from NGR234 are sufficient to confer this extended host-range phenotype to L. leucocephala. Strain USDA257 contains its own copy of nodSU, including upstream nod-box sequences. Although both nucleotide and deduced amino acid sequences of the reading frames are homologous between the two strains, there are gaps within the promoter region and the 5′-end of nodS of USDA257. Consequently, the deduced NodS protein of USDA2S7 is shorter than its counterpart from NGR234, and the distance between the nod-box and the initiation codon is greater. A 36 bp deletion encompasses the extreme right border of the USDA257 nod-box and extends into the upstream leader sequence. Transcriptional fusions with both nod-boxes confirmed that the promoter from NGR234 is flavonoid-inducible, and that the nod-box from USDA257 is not. These observations were corroborated by Northern analysis with a nodS-containing Xhol fragment as hybridization probe. Flavonoid-induced cells of NGR234 gave an intense signal, but those of USDA257 yielded only a weak trace of hybridization. EcoRl fragments with homology to nodSU of USDA257 are present in 17 of 35 tested strains, including several representatives ofBradyrhizobium japonicum, Rhizobium sp., R. loti, and R. fredii. Two wild-type, leucaena-nodulating strains of Rhizobium sp. lack this homology. We conclude that a genetic defect in expression of nodS accounts for the inability of USDA257 to nodulate leucaena and that diverse rhizobia may have evolved alternative mechanisms to nodulate this legume species.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1432-2048
    Keywords: Endosperm ; Golgi apparatus ; Oryza (protein bodies) ; Protein deposition ; Storage protein
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Antibodies raised against purified glutelins and prolamines were employed as probes to study the cellular routes by which these proteins are deposited into protein bodies of rice (Oryza sativa L.) endosperm. Three morphologically distinct protein bodies, large spherical, small spherical, and irregularly-shaped, were observed, in agreement with existing reports. Immunocytochemical studies showed the presence of glutelins in the irregularly-shaped protein bodies while the prolamines were found in both the large and small spherical protein bodies. Both the large and small spherical protein bodies, distinguishable by electron density and gold-labeling patterns, appear to be formed by direct deposition of the newly formed proteins into the lumen of the rough endoplasmic reticulum (ER). In contrast, glutelin protein bodies are formed via the Golgi apparatus. Small electron-lucent vesicles are often found at one side of the Golgi. Electron-dense vesicles, whose contents are labeled by glutelin antibody-gold particles, are commonly observed at the distal side of the Golgi apparatus and fuse to form the irregularly shaped protein bodies in endosperm cells. These observations indicate that the transport of rice glutelins from their site of synthesis, the ER, to the site of deposition, the protein bodies, is mediated by the Golgi apparatus.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Springer
    Protoplasma 144 (1988), S. 25-33 
    ISSN: 1615-6102
    Keywords: Golgi complex ; Haynaldia villosa ; Immunocytochemistry ; Prolamines ; Protein A-gold ; Protein body
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary Haynaldia villosa is a wild grass belonging to the tribe Triticeae, which includes important crops such as wheat, barley, and rye. The alcohol-soluble proteins ofH. villosa have extensive immunological relatedness with wheat prolamines as visualized by Western blot analysis. Amorphous protein inclusions surrounded by a limiting membrane are commonly found in the vacuoles of endosperm and subaleurone layers ofH. villosa seeds. A layer of cells just beneath the aleurone layer is rich in ER. Unlike that in other cell types, the ER in these cells is highly dilated and contains materials at its swollen distal ends. These materials are structurally similar to substances found in the protein bodies. Protein A-gold immunocytochemical localization studies employing antibodies against wheat prolamine confirmed that the inclusions found in the lumen of the ER do not contain prolamines. This observation indicates that the ER does not act as the site of prolamine accumulation inH. villosa. Protein bodies found in the vacuoles and the vesicles associated with the Golgi complexes were specifically labeled. This suggests that Golgi complexes mediate the transport of prolamines into vacuoles ofH. villosa endosperm cells, in a fashion analogous to that of other vacuolar proteins of dicotyledonous plants.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2014-04-14
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2010-10-11
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2014-04-30
    Description: The symbiosis between rhizobial microbes and host plants involves the coordinated expression of multiple genes, which leads to nodule formation and nitrogen fixation. As part of the transcriptional machinery for nodulation and symbiosis across a range of Rhizobium, NolR serves as a global regulatory protein. Here, we present the X-ray...
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2017-07-06
    Description: During ongoing proteomic analysis of the soybean ( Glycine max (L.) Merr) germplasm collection, PI 603408 was identified as a landrace whose seeds lack accumulation of one of the major seed storage glycinin protein subunits. Whole genomic resequencing was used to identify a two-base deletion affecting glycinin 5 . The newly discovered deletion was confirmed to be causative through immunological, genetic, and proteomic analysis, and no significant differences in total seed protein content were found to be due to the glycinin 5 loss-of-function mutation per se . In addition to focused studies on this one specific glycinin subunit-encoding gene, a total of 1,858,185 nucleotide variants were identified, of which 39,344 were predicted to affect protein coding regions. In order to semiautomate analysis of a large number of soybean gene variants, a new SIFT 4G (Sorting Intolerant From Tolerated 4 Genomes) database was designed to predict the impact of nonsynonymous single nucleotide soybean gene variants, potentially enabling more rapid analysis of soybean resequencing data in the future.
    Electronic ISSN: 2160-1836
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...