ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Climatic change 36 (1997), S. 197-215 
    ISSN: 1573-1480
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Physics
    Notes: Abstract The Russian Federation contains approximately 20% of the world's timber resources and more than half of all boreal forests. These forests play a prominent role in environmental protection and economic development at global, national, and local levels, as well as, provide commodities for indigenous people and habitat for a variety of plant and animal species. The response and feedbacks of Russian boreal forests to projected global climate change are expected to be profound. Large shifts in the distribution (up to 19% area reduction) and productivity of boreal forests are implied by scenarios of General Circulation Models (GCMs). Uncertainty regarding the potential distribution and productivity of future boreal forests complicates the development of adaptation strategies for forest establishment, management, harvesting and wood processing. Although a low potential exists for rapid natural adaptation of long-lived, complex boreal forests, recent analyses suggest Russian forest management and utilization strategies should be field tested to assess their potential to assist boreal forests in adaptation to a changing global environment. Current understanding of the vulnerability of Russian forest resources to projected climate change is discussed and examples of possible adaptation measures for Russian forests are presented, including: (1) artificial forestation techniques that can be applied with the advent of failed natural regeneration and to facilitate forest migration northward; (2) silvicultural measures that can influence the species mix to maintain productivity under future climates; (3) identifying forests at risk and developing special management adaptation measures for them; (4) alternative processing and uses of wood and non-wood products from future forests; and (5) potential future infrastructure and transport systems that can be employed as boreal forests shift northward into melting permafrost zones. Current infrastructure and technology can be employed to help Russian boreal forests adapt to projected global environmental change, however many current forest management practices may have to be modified. Application of this technical knowledge can help policymakers identify priorities for climate change adaptation.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Water, air & soil pollution 82 (1995), S. 227-238 
    ISSN: 1573-2932
    Keywords: dead wood ; carbon cycle ; Russian forests ; decay rates ; biomass pools
    Source: Springer Online Journal Archives 1860-2000
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Notes: Abstract Our study examines dead wood dynamics in a series of permanent plots established in closed, productive second-growth forest stands of north-west Russia and in temporary plots that represent different successional stages and types of disturbance. Dead wood stores measured on 63 plots 0.2–1.0 ha in size range from 1–8 Mg C ha−1 in young to mature intensively managed stands, 17 Mg C ha−1 in an old-growth forest, 20 Mg C ha−1 on a clear-cut, and 21–39 Mg C ha−1 following a severe windthrow. A total of 122 logs, snags, and stumps aged by long-term plot records was sampled for decay rates and to develop a system of decay classes. Annual decomposition rates are: 3.3% for pine, 3.4% for spruce, and 4.5% for birch. Based on these decay rates the average residence time of carbon (C) in the dead wood pool is 22–30 years. The mortality input on the permanent plots was 23–60 Mg C ha−1 over 60 years of observation or 15–50% of the total biomass increment. This data suggests a dead wood mass of 10–22 Mg C ha−1 would be expected in these mature forests if salvage had not occurred. In old-growth forests, dead wood comprised about 20% of the total wood mass, a proportion quite similar to the larger, more productive forests of the Pacific Northwest (USA). If this proportioning is characteristic of cool conifer forests it would be useful to estimate potential dead wood mass for old-growth forests without dead wood inventories. However, the use of a single live/dead wood ratio across the range of successional stages, a common practice in C budget calculations, may substantially over-or under-estimate the dead wood C pool depending upon the type of disturbance regime. Intensive forest management including short harvest rotations, thinning and wood salvage reduces dead wood C stores to 5–40% of the potential level found in undisturbed old-growth forest. In contrast, natural disturbance increases dead wood C pool by a factor of 2–4.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2005-09-01
    Description: We used detailed forest inventory data from 43 forests (3.5 × 103 115.2 × 103 stands each) and meteorological data from 30 weather stations located in proximity to these forests to assess the effects of disturbance and climate on biomass accumulation patterns across the forest zone of Russia. Chronosequences of biomass accumulation following disturbance were developed for each of the two to five dominant tree species in each forest using stand survey data collected by forest inventories in different regions of Russia between 1986 and 2003. These chronosequences represent changes in average live biomass of forest stands between age 10 and 210 years at 10-year intervals. The correlation of attributes of biomass accumulation (i.e., maximum biomass, biomass at age 40, and maximum biomass increment) with climatic and disturbance attributes was significant but weak (adjusted R2 = 0.200.37). The effect of the most influential disturbance attributes (percent clear-cut and percent old forest) was as strong or stronger than the effect of climatic attributes (30-year averages of the sum of positive daily temperatures and climate moisture index). The effect of tree species was significant, but weaker than the effects of climate or disturbance. Combining climate, disturbance, and species attributes generally improved the models (adjusted R2 = 0.370.53). The patterns of biomass change observed in chronosequences are influenced by the tendency of harvesting to target more productive forest stands of commercially valuable species, creating a disparity in productivity among the age cohorts. The apparent link between disturbance attributes of forests and biomass accumulation patterms in forest stands may be used to improve broad-scale modeling of changes in forest biomass with remotely sensed data.
    Print ISSN: 0045-5067
    Electronic ISSN: 1208-6037
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 1995-05-01
    Print ISSN: 0049-6979
    Electronic ISSN: 1573-2932
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2008-12-23
    Description: Boreal peatlands play a major role in carbon and water cycling and other global environmental processes but understanding this role is constrained by inconsistent representation of peatlands on, or omission from, many global land cover maps. The comparison of several widely used global and continental-scale databases on peatland distribution with a detailed map for the St. Petersburg region of Russia showed significant under-reporting of peatland area, or even total omission. Analysis of the spatial agreement and disagreement with the detailed regional map indicated that the error of comission (overestimation) was significantly lower than the error of omission (underestimation) which means, that overall, peatlands were correctly classified as such in coarse resolution datasets but a large proportion (74–99%) was overlooked. The coarse map resolution alone caused significant omission of peatlands in the study region. In comparison to categorical maps, continuous field mapping approach utilizing MODIS sensor data showed potential for a greatly improved representation of peatlands on coarse resolution maps. Analysis of spectral signatures of peatlands with different types of surface vegetation suggested that improved mapping of boreal peatlands on categorical maps is feasible. The lower reflectance of treeless peatlands in the near- and shortwave-infrared parts of the electromagnetic spectrum is consistent with the spectral signature of sphagnum mosses. However, when trees are present, the canopy architecture appears to be more important in defining the overall spectral reflectance of peatlands. A research focus on developing remote sensing methods for boreal peatlands is needed for adequate characterization of their global distribution.
    Print ISSN: 1726-4170
    Electronic ISSN: 1726-4189
    Topics: Biology , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2008-05-16
    Description: Boreal peatlands play a major role in carbon and water cycling and other global environmental processes but understanding this role is constrained by inconsistent representation of peatlands on, or omission from, many global land cover maps. The comparison of several widely used global and continental-scale databases on peatland distribution with a detailed map for the St. Petersburg region of Russia showed significant under-reporting of peatland area, or even total omission. Analysis of the spatial agreement and disagreement with the detailed regional map indicated that the error of comission (overestimation) was significantly lower than the error of omission (underestimation) which means, that overall, peatlands were correctly classified as such in coarse resolution datasets but a large proportion (74–99%) was overlooked. The coarse map resolution alone caused significant omission of peatlands in the study region. In comparison to categorical maps, continuous field mapping approach utilizing MODIS sensor data showed potential for a greatly improved representation of peatlands on coarse resolution maps. Analysis of spectral signatures of peatlands with different types of surface vegetation suggested that improved mapping of boreal peatlands on categorical maps is feasible. The lower reflectance of treeless peatlands in the near- and shortwave-infrared parts of the electromagnetic spectrum is consistent with the spectral signature of sphagnum mosses. However, when trees are present, the canopy architecture appears to be more important in defining the overall spectral reflectance of peatlands. A research focus on developing remote sensing methods for boreal peatlands is needed for adequate characterization of their global distribution.
    Print ISSN: 1810-6277
    Electronic ISSN: 1810-6285
    Topics: Biology , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2007-10-01
    Print ISSN: 1748-9318
    Electronic ISSN: 1748-9326
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by Institute of Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...