ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Collection
Publisher
  • 1
    Publication Date: 2009-12-10
    Description: This paper presents a summary of the measurements that were made during the heavily-instrumented Reactive Halogens in the Marine Boundary Layer (RHaMBLe) coastal study in Roscoff on the North West coast of France. It was clearly demonstrated that iodine-mediated coastal particle formation occurs, driven by daytime low tide emission of molecular iodine, I2, by macroalgal species fully or partially exposed by the receding waterline. Ultrafine particle concentrations strongly correlate with the rapidly recycled reactive iodine species, IO, produced at high concentrations following photolysis of I2. The heterogeneous macroalgal I2 sources lead to variable relative concentrations of iodine species observed by path-integrated and in situ measurement techniques. Apparent particle emission fluxes were associated with an enhanced apparent depositional flux of ozone, consistent with both a direct O3 deposition to macroalgae and involvement of O3 in iodine photochemistry and subsequent particle formation below the measurement height. The magnitude of the particle formation events was observed to be greatest at the lowest tides with higher concentrations of ultrafine particles growing to much larger sizes, probably by the condensation of anthropogenically-formed condensable material. At such sizes the particles should be able to act as cloud condensation nuclei at reasonable atmospheric supersaturations.
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2016-01-25
    Description: Nitrous acid (HONO) has been quantitatively measured in-situ by differential photolysis at 385 and 395 nm and subsequent detection as nitric oxide (NO) by the chemiluminescence reaction with ozone (O3). The technique has been evaluated by FT-IR to provide a direct HONO measurement in a simulation chamber, and compared side-by-side with a LOng Absorption Path Optical Photometer (LOPAP) in the field. The NO/O3 chemiluminescence technique is robust, well characterized and capable of sampling at low pressure whilst solid-state converter technology allows for unattended in-situ HONO measurements in combination with fast time resolution and response.
    Electronic ISSN: 1867-8610
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2010-03-29
    Description: This paper presents a summary of the measurements made during the heavily-instrumented Reactive Halogens in the Marine Boundary Layer (RHaMBLe) coastal study in Roscoff on the North West coast of France throughout September 2006. It was clearly demonstrated that iodine-mediated coastal particle formation occurs, driven by daytime low tide emission of molecular iodine, I2, by macroalgal species fully or partially exposed by the receding waterline. Ultrafine particle concentrations strongly correlate with the rapidly recycled reactive iodine species, IO, produced at high concentrations following photolysis of I2. The heterogeneous macroalgal I2 sources lead to variable relative concentrations of iodine species observed by path-integrated and in situ measurement techniques. Apparent particle emission fluxes were associated with an enhanced apparent depositional flux of ozone, consistent with both a direct O3 deposition to macroalgae and involvement of O3 in iodine photochemistry and subsequent particle formation below the measurement height. The magnitude of the particle formation events was observed to be greatest at the lowest tides with the highest concentrations of ultrafine particles growing to the largest sizes, probably by the condensation of anthropogenically-formed condensable material. At such sizes the particles should be able to act as cloud condensation nuclei at reasonable atmospheric supersaturations.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2005-03-02
    Description: The Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) on ENVISAT has made extensive measurements of polar stratospheric clouds (PSCs) in the northern hemisphere winter 2002/2003. A PSC detection method based on a ratio of radiances (the cloud index) has been implemented for MIPAS and is validated in this study with respect to ground-based lidar and space borne occultation measurements. A very good correspondence in PSC sighting and cloud altitude between MIPAS detections and those of other instruments is found for cloud index values of less than four. Comparisons with data from the Stratospheric Aerosol and Gas Experiment (SAGE) III are used to further show that the sensitivity of the MIPAS detection method for this threshold value of cloud index is approximately equivalent to an extinction limit of 10-3km-1 at 1022nm, a wavelength used by solar occultation experiments. The MIPAS cloud index data are subsequently used to examine, for the first time with any technique, the evolution of PSCs throughout the Arctic polar vortex up to a latitude close to 90° north on a near-daily basis. We find that the winter of 2002/2003 is characterised by three phases of very different PSC activity. First, an unusual, extremely cold phase in the first three weeks of December resulted in high PSC occurrence rates. This was followed by a second phase of only moderate PSC activity from 5-13 January, separated from the first phase by a minor warming event. Finally there was a third phase from February to the end of March where only sporadic and mostly weak PSC events took place. The composition of PSCs during the winter period has also been examined, exploiting in particular an infra-red spectral signature which is probably characteristic of NAT. The MIPAS observations show the presence of these particles on a number of occasions in December but very rarely in January. The PSC type differentiation from MIPAS indicates that future comparisons of PSC observations with microphysical and denitrification models might be revealing about aspects of solid particle existence and location.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2014-05-27
    Description: Measurements of atmospheric NOx (NOx = NO + NO2), peroxyacetyl nitrate (PAN), NOy and non-methane hydrocarbons (NMHC) were taken at the GEOSummit Station, Greenland (72.34° N, 38.29° W, 3212 m.a.s.l) from July 2008 to July 2010. The data set represents the first year-round concurrent record of these compounds sampled at a high latitude Arctic site in the free troposphere. Here, the study focused on the seasonal variability of these important ozone (O3) precursors in the Arctic free troposphere and the impact from transported anthropogenic and biomass burning emissions. Our analysis shows that PAN is the dominant NOy species in all seasons at Summit, varying from 49% to 78%, however, we find that odd NOy species (odd NOy = NOy − PAN-NOx) contribute a large amount to the total NOy speciation with monthly means of up to 95 pmol mol−1 in the winter and ∼40 pmol mol−1 in the summer, and that the level of odd NOy species at Summit during summer is greater than that of NOx. We hypothesize that the source of this odd NOy is most likely alkyl nitrates from transported pollution, and photochemically produced species such as HNO3 and HONO. FLEXPART retroplume analysis and tracers for anthropogenic and biomass burning emissions, were used to identify periods when the site was impacted by polluted air masses. Europe contributed the largest source of anthropogenic emissions during the winter and spring months, with up to 82% of the simulated anthropogenic black carbon originating from this region between December 2009 and March 2010, whereas, North America was the primary source of biomass burning emissions. Polluted air masses were typically aged, with median transport times to the site from the source region of 11 days for anthropogenic events in winter, and 14 days for BB plumes. Overall we find that the transport of polluted air masses to the high altitude Arctic typically resulted in high variability in levels of O3 and O3 precursors. During winter, plumes originating from mid-latitude regions and transported in the lower troposphere to Summit often result in lower O3 mole fractions than background levels. However, plumes transported at higher altitudes can result in positive enhancements in O3 levels. It is therefore likely that the air masses transported in the mid-troposphere were mixed with air from stratospheric origin. Similar enhancements in O3 and its precursors were also observed during periods when FLEXPART indicated that biomass burning emissions impacted Summit. The analysis of anthropogenic events over summer show that emissions of anthropogenic origin have a greater impact on O3 and precursor levels at Summit than biomass burning sources during the measurement period, with enhancements above background levels of up to 16 nmol mol−1 for O3 and 237 pmol mol−1 and 205 pmol mol−1, 28 pmol mol−1 and 1.0 nmol mol−1 for NOy, PAN, NOx and ethane, respectively.
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2004-10-06
    Description: The Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) on ENVISAT has made extensive measurements of polar stratospheric clouds (PSCs) in the northern hemisphere winter 2002/2003. A PSC detection method, based on a ratio of radiances (the cloud index), has been implemented for MIPAS and is validated in this study with respect to ground based lidar and space borne occultation measurements. A very good correspondence in PSC sighting and cloud altitude between MIPAS detections and those of other instruments is found for cloud index values less than four. Comparisons with data from the Stratospheric Aerosol and Gas Experiment (SAGE) III are used to show further that the sensitivity of the MIPAS detection method for this threshold value of cloud index is approximately equivalent to an extinction limit of 10−3 km−1 at 1022 nm, a wavelength used by solar occultation experiments. The MIPAS cloud index data are subsequently used to examine, for the first time with any technique, the evolution of PSCs throughout the Arctic polar vortex up to a latitude of 90° north on a near-daily basis. We find that the winter of 2002/2003 is characterised by three phases of very different PSC activity: First, an unusual, extremely cold phase in the first three weeks of December resulted in high PSC occurrence rates. This was followed by a second phase of only moderate PSC activity from 5–13 January, separated from the first phase by a minor warming event. Finally there was a third phase from February to end of March where only sporadic and mostly weak PSC events took place. The composition of PSCs during the winter period has also been examined, exploiting particularly an infra-red spectral signature which is probably characteristic of NAT. The MIPAS observations show the presence of these particles on a number of occasions in December but very rarely in January. The PSC type differentiation from MIPAS indicates that future comparisons of PSC observations with microphysical and denitrification models might be revealing about aspects of solid particle existence and location.
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2015-05-05
    Description: Free tropospheric aerosol was sampled at the Pico Mountain Observatory located at 2225 m above mean sea level on Pico Island of the Azores archipelago in the North Atlantic. The observatory is located ~ 3900 km east and downwind of North America, which enables studies of free tropospheric air transported over long distances. Aerosol samples collected on filters from June to October 2012 were analyzed to characterize organic carbon, elemental carbon, and inorganic ions. The average ambient concentration of aerosol was 0.9 ± 0.7 μg m−3. On average, organic aerosol components represent the largest mass fraction of the total measured aerosol (60 ± 51%), followed by sulfate (23 ± 28%), nitrate (13 ± 10%), chloride (2 ± 3%), and elemental carbon (2 ± 2%). Water-soluble organic matter (WSOM) extracted from two aerosol samples (9/24 and 9/25) collected consecutively during a pollution event were analyzed using ultrahigh-resolution electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry. Approximately 4000 molecular formulas were assigned to each of the mass spectra in the range of m/z 100–1000. The majority of the assigned molecular formulas had unsaturated structures with CHO and CHNO elemental compositions. FLEXPART retroplume analyses showed the sampled air masses were very aged (average plume age 〉 12 days). These aged aerosol WSOM compounds had an average O/C ratio of ~ 0.45, which is relatively low compared to O/C ratios of other aged aerosol. The increase in aerosol loading during the measurement period of 9/24 was linked to biomass burning emissions from North America by FLEXPART retroplume analysis and Moderate Resolution Imaging Spectroradiometer (MODIS) fire counts. This was confirmed with biomass burning markers detected in the WSOM and with the morphology and mixing state of particles as determined by scanning electron microscopy. The presence of markers characteristic of aqueous-phase reactions of phenolic species suggests that the aerosol collected at the Pico Mountain Observatory had undergone cloud processing before reaching the site. Finally, the air masses of 9/25 were more aged and influenced by marine emissions, as indicated by the presence of organosulfates and other species characteristic of marine aerosol. The change in the air masses for the two samples was corroborated by the changes in ethane, propane, and ozone, morphology of particles, as well as by the FLEXPART retroplume simulations. This paper presents the first detailed molecular characterization of free tropospheric aged aerosol intercepted at a lower free troposphere remote location and provides evidence of low oxygenation after long-range transport. We hypothesize this is a result of the selective removal of highly aged and polar species during long-range transport, because the aerosol underwent a combination of atmospheric processes during transport facilitating aqueous-phase removal (e.g., clouds processing) and fragmentation (e.g., photolysis) of components.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2015-06-22
    Description: Measurements of atmospheric nitrogen oxides NOx (NOx = NO + NO2), peroxyacetyl nitrate (PAN), NOy, and non-methane hydrocarbons (NMHC) were taken at the Greenland Environmental Observatory at Summit (GEOSummit) station, Greenland (72.34° N, 38.29° W; 3212 m a.s.l.), from July 2008 to July 2010. The data set represents the first year-round concurrent record of these compounds sampled at a high latitude Arctic site. Here, the study focused on the seasonal variability of these important ozone (O3) precursors in the Arctic troposphere and the impact from transported anthropogenic and biomass burning emissions. Our analysis shows that PAN is the dominant NOy species in all seasons at Summit, varying from 42 to 76 %; however, we find that odd NOy species (odd NOy = NOy − PAN − NOx) contribute a large amount to the total NOy speciation. We hypothesize that the source of this odd NOy is most likely alkyl nitrates and nitric acid (HNO3) from transported pollution, and photochemically produced species such as nitrous acid (HONO). FLEXPART retroplume analyses and black carbon (BC) tracers for anthropogenic and biomass burning (BB) emissions were used to identify periods when the site was impacted by polluted air masses. Europe contributed the largest source of anthropogenic emissions during the winter months (November–March) with 56 % of the total anthropogenic BC tracer originating from Europe in 2008–2009 and 69 % in 2009–2010. The polluted plumes resulted in mean enhancements above background levels up to 334, 295, 88, and 1119 pmol mol−1 for NOy, PAN, NOx, and ethane, respectively, over the two winters. Enhancements in O3 precursors during the second winter were typically higher, which may be attributed to the increase in European polluted air masses transported to Summit in 2009–2010 compared to 2008–2009. O3 levels were highly variable within the sampled anthropogenic plumes with mean ΔO3 levels ranging from −6.7 to 7.6 nmol mol−1 during the winter periods. North America was the primary source of biomass burning emissions during the summer; however, only 13 BB events were observed as the number of air masses transported to Summit, with significant BB emissions, was low in general during the measurement period. The BB plumes were typically very aged, with median transport times to the site from the source region of 14 days. The analyses of O3 and precursor levels during the BB events indicate that some of the plumes sampled impacted the atmospheric chemistry at Summit, with enhancements observed in all measured species.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...