ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1
    Publication Date: 2020-07-07
    Description: The openness of the Android operating system and its immense penetration into the market makes it a hot target for malware writers. This work introduces Androtomist, a novel tool capable of symmetrically applying static and dynamic analysis of applications on the Android platform. Unlike similar hybrid solutions, Androtomist capitalizes on a wealth of features stemming from static analysis along with rigorous dynamic instrumentation to dissect applications and decide if they are benign or not. The focus is on anomaly detection using machine learning, but the system is able to autonomously conduct signature-based detection as well. Furthermore, Androtomist is publicly available as open source software and can be straightforwardly installed as a web application. The application itself is dual mode, that is, fully automated for the novice user and configurable for the expert one. As a proof-of-concept, we meticulously assess the detection accuracy of Androtomist against three different popular malware datasets and a handful of machine learning classifiers. We particularly concentrate on the classification performance achieved when the results of static analysis are combined with dynamic instrumentation vis-à-vis static analysis only. Our study also introduces an ensemble approach by averaging the output of all base classification models per malware instance separately, and provides a deeper insight on the most influencing features regarding the classification process. Depending on the employed dataset, for hybrid analysis, we report notably promising to excellent results in terms of the accuracy, F1, and AUC metrics.
    Electronic ISSN: 2073-8994
    Topics: Mathematics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-02-25
    Description: Using automotive smartphone applications (apps) provided by car manufacturers may offer numerous advantages to the vehicle owner, including improved safety, fuel efficiency, anytime monitoring of vehicle data, and timely over-the-air delivery of software updates. On the other hand, the continuous tracking of the vehicle data by such apps may also pose a risk to the car owner, if, say, sensitive pieces of information are leaked to third parties or the app is vulnerable to attacks. This work contributes the first to our knowledge full-fledged security assessment of all the official single-vehicle management apps offered by major car manufacturers who operate in Europe. The apps are scrutinised statically with the purpose of not only identifying surfeits, say, in terms of the permissions requested, but also from a vulnerability assessment viewpoint. On top of that, we run each app to identify possible weak security practices in the owner-to-app registration process. The results reveal a multitude of issues, ranging from an over-claim of sensitive permissions and the use of possibly privacy-invasive API calls, to numerous potentially exploitable CWE and CVE-identified weaknesses and vulnerabilities, the, in some cases, excessive employment of third-party trackers, and a number of other flaws related to the use of third-party software libraries, unsanitised input, and weak user password policies, to mention just a few.
    Electronic ISSN: 1999-5903
    Topics: Computer Science
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2021-04-25
    Description: Year after year, mobile malware attacks grow in both sophistication and diffusion. As the open source Android platform continues to dominate the market, malware writers consider it as their preferred target. Almost strictly, state-of-the-art mobile malware detection solutions in the literature capitalize on machine learning to detect pieces of malware. Nevertheless, our findings clearly indicate that the majority of existing works utilize different metrics and models and employ diverse datasets and classification features stemming from disparate analysis techniques, i.e., static, dynamic, or hybrid. This complicates the cross-comparison of the various proposed detection schemes and may also raise doubts about the derived results. To address this problem, spanning a period of the last seven years, this work attempts to schematize the so far ML-powered malware detection approaches and techniques by organizing them under four axes, namely, the age of the selected dataset, the analysis type used, the employed ML techniques, and the chosen performance metrics. Moreover, based on these axes, we introduce a converging scheme which can guide future Android malware detection techniques and provide a solid baseline to machine learning practices in this field.
    Electronic ISSN: 2078-2489
    Topics: Computer Science
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...