ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1365-2958
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Medicine
    Notes: The ability of bacteria to establish complex communities on surfaces is believed to require both bacterial–substratum and bacterial–bacterial interactions, and type IV pili appear to play a critical but incompletely defined role in both these processes. Using the human pathogen Neisseria gonorrhoeae, spontaneous mutants defective in bacterial self-aggregative behaviour but quantitatively unaltered in pilus fibre expression were isolated by a unique selective scheme. The mutants, carrying single amino acid substitutions within the conserved amino-terminal domain of the pilus fibre subunit, were reduced in the ability to adhere to a human epithelial cell line. Co-expression of the altered alleles in the context of a wild-type pilE gene confirmed that they were dominant negative with respect to aggregation and human cell adherence. Strains expressing two copies of the altered alleles produced twice as much purifiable pili but retained the aggregative and adherence defects. Finally, the defects in aggregative behaviour and adherence of each of the mutants were suppressed by a loss-of-function mutation in the twitching motility gene pilT. The correlations between self-aggregation and the net capacity of the microbial population to adhere efficiently demonstrates the potential significance of bacterial cell–cell interactions to colonization.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1365-2958
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Medicine
    Notes: Although natural genetic transformation is a widely disseminated form of genetic exchange in prokaryotic species, the proficiencies with which DNA recognition, uptake and processing occur in nature vary greatly. However, the molecular factors and interactions underlying intra- and interspecies diversity in levels of competence for natural genetic transformation are poorly understood. In Neisseria gonorrhoeae, the Gram-negative aetiologic agent of gonorrhoea, DNA binding and uptake involve components required for Type IV pilus (Tfp) biogenesis as well as those which are structurally related to Tfp biogenesis components but dispensable for organelle expression. We demonstrate here that the gonococcal PilV protein, structurally related to Tfp pilin subunits, is an intrinsic inhibitor of natural genetic transformation which acts ultimately by reducing the levels of sequence-specific DNA uptake into the cell. Specifically, we show that DNA uptake is enhanced in strains bearing pilV mutations and reduced in strains overexpressing PilV. Furthermore, we show that PilV exerts its effect by acting as an antagonist of ComP, a positive effector of sequence-specific DNA binding. As it prevents the accumulation of ComP at a site where it can be purified by shear extraction of intact cells, the data are most consistent with PilV either obstructing ComP trafficking or altering ComP stability. In addition, we report that ComP and PilV play overlapping and partially redundant roles in Tfp biogenesis and document other genetic interactions between comP and pilV together with the pilE and pilT genes required for the expression of retractile Tfp. Together, the results reveal a novel mechanism by which the levels of competence are governed in prokaryotic species and suggest unique ways by which competence might be modulated.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1365-2958
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Medicine
    Notes: Neisseria gonorrhoeae, the Gram-negative aetiological agent of gonorrhoea, is one of many mucosal pathogens of man that expresses competence for natural transformation. Expression of this phenotype by gonococci appears to rely on the expression of type IV pili (Tfp), but the mechanistic basis for this relationship remains unknown. During studies of gonococcal pilus biogenesis, a homologue of the PilT family of proteins, required for Tfp-dependent twitching motility in Pseudomonas aeruginosa and social gliding motility in Myxococcus xanthus, was discovered. Like the findings in these other species, we show here that gonococcal pilT mutants constructed in vitro no longer display twitching motility. In addition, we demonstrate that they have concurrently lost the ability to undergo natural transformation, despite the expression of structurally and morphologically normal Tfp. These results were confirmed by the findings that two classes of spontaneous mutants that failed to express twitching motility and transformability carried mutations in pilT. Piliated pilT mutants and a panel of pilus assembly mutants were found to be deficient in sequence-specific DNA uptake into the cell, the earliest demonstrable step in neisserial competence. The PilT-deficient strains represent the first genetically defined mutants that are defective in DNA uptake but retain Tfp expression.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Oxford BSL : Blackwell Science Ltd
    Molecular microbiology 23 (1997), S. 0 
    ISSN: 1365-2958
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Medicine
    Notes: Studies of gonococcal pilus biogenesis are fundamental to understanding organelle structure/function relationships and identifying new approaches to controlling disease. This area of research is also relevant to elucidating the basic mechanisms of outer membrane translocation of macromolecules, which requires components highly related to those involved in type IV pilus expression. Previous studies have shown that products of several ancillary pil genes are required for organelle biogenesis but of these only PilQ, a member of the GspD protein family, is a component of the outer membrane. DNA sequencing of the region upstream of pilQ revealed the presence of two open reading frames (ORFs) whose deduced polypeptides shared significant identities with proteins required for pilus expression in Pseudomonas aeruginosa and Pseudomonas syringae, the genes for which are arrayed upstream of a gene encoding a PilQ homologue. Gonococcal mutants bearing transposon insertions in these ORFs were non-piliated and failed to express pilus-associated phenotypes, and the corresponding genes were designated pilO and pilP. The piliation defects in the mutants could not be ascribed to polarity on distal pilQ expression as shown by direct measurement of PilQ antigen in those backgrounds and the use of a novel technique to create tandem duplications in the gonococcus (Gc) genome. As predicted by the presence of a consensus lipoprotein signal sequence, PilP expressed in both Escherichia coli and Gc could be labelled with [3H]-palmitic acid. PilP− as well as PilQ− mutants shed PilC, a protein which facilitates pilus assembly and is implicated in epithelial cell adherence, in a soluble form. Combined with the finding that levels of multimerized PilQ were greatly reduced in PilP− mutants, the results suggest that PilP is required for PilQ function and that PilQ and PilC may interact during the terminal stages of pilus biogenesis. The findings also support the hypothesis that the Gc PilQ multimer corresponds to a physiologically relevant form of the protein required for pilus biogenesis.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Molecular microbiology 16 (1995), S. 0 
    ISSN: 1365-2958
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Medicine
    Notes: Expression of type IV pili appears to be a requisite determinant of infectivity for the strict human pathogens Neisseria gonorrhoeae and Neisseria meningitidis. The assembly of these colonization factors is a complex process. This report describes a new pilus-assembly gene, pilG, that immediately precedes the gonococcal (Gc) pilD gene encoding the pre-pilin leader peptidase. The nucleotide sequence of this region revealed a single complete open reading frame whose derived polypeptide displayed significant identities to the pilus-assembty protein PilC of Pseudomonas aeruginosa and other polytopic integral cytoplasmic membrane constituents involved in protein export and competence. A unique polypeptide of Mr 38kDa corresponding to the gene product was identified. A highly related gene and flanking sequences were cloned from a group E polysaccharide-producing strain of N. meningitidis (Mc). The results indicate that the pilG genes and genetic organization at these loci in Gc and Me are extremely conserved. Hybridization studies strongly suggest that pilG-related genes exist in commensal Neisseria species and other species known to express type IV pili. Defined genetic lesions were created by using insertional and transposon mutagenesis and moved into the Gc and Me chromosomes by allelic replacement. Chromosomal pilG insertion mutants were devoid of pili and displayed dramatically reduced competence for transformation. These findings could not be ascribed to pilin-gene alterations or to polarity exerted on pilD expression. The results indicated that PilG exerts its own independent role in neisserial pilus biogenesis.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Molecular microbiology 16 (1995), S. 0 
    ISSN: 1365-2958
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Medicine
    Notes: Expression of Type IV pili by the bacterial pathogen Neisseria gonorrhoeae appears to be essential for colonization of the human host. Several N. gonorrhoeae gene products have been recently identified which bear homology to proteins involved in pilus assembly and protein export in other bacterial systems. We report here the isolation and characterization of transposon insertion mutants in N. gonorrhoeae whose phenotypes indicate that the N. gonorrhoeae pilF and pilD gene products are required for gonoccocal pilus biogenesis. Mutants lacking the pilD gene product, a pre-pilin peptidase, were unable to process the pre-pilin subunit into pilin and thus were non-piliated. pilF mutants processed pilin but did not assemble the mature subunit. Both classes of mutants released S-pilin, a soluble, truncated form of the pilin subunit previously correlated with defects in pilus assembly. In addition, mutants containing transposon insertions in pilD or in a downstream gene, orfX, exhibited a severely restricted growth phenotype. Deletion analysis of pilD indicated that the poor growth phenotype observed for the pilD transposon mutants was a result of polar effects of the insertions on orfX expression. orfX encodes a predicted polypeptide of 23 kDa which contains a consensus nucleotide-binding domain and has apparent homologues in Pseudomonas aeruginosa, Pseudomonas putida, Thermus thermophilus, and the eukaryote Caenorhabditis elegans. Although expression of orfX and pilD appears to be transcriptionally coupled, mutants containing transposon insertions in orfX expressed pili. Unlike either pilF or pilD mutants, orfX mutants were also competent for DNA transformation.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    ISSN: 1365-2958
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Medicine
    Notes: Secretins are a large family of proteins associated with membrane translocation of macromolecular complexes, and a subset of this family, termed PilQ proteins, is required for type IV pilus biogenesis. We analysed the status of PilQ expression in Neisseria meningitidis (Mc) and found that PilQ− mutants were non-piliated and deficient in the expression of pilus-associated phenotypes. Sequence analysis of the 5′ portion of the pilQ ORF of the serogroup B Mc strain 44/76 showed the presence of seven copies of a repetitive sequence element, in contrast to the situation in N. gonorrhoeae (Gc) strains, which carry either two or three copies of the repeat. The derived amino acid sequence of the consensus nucleotide repeat was an octapeptide PAKQQAAA, designated as the small basic repeat (SBR). This gene segment was studied in more detail in a collection of 52 Mc strains of diverse origin by screening for variability in the size of the PCR-generated DNA fragments spanning the SBRs. These strains were found to harbour from four to seven copies of the repetitive element. No association between the number of copies and the serogroup, geographic origin or multilocus genotype of the strains was evident. The presence of polymorphic repeat elements in Mc PilQ is unprecedented within the secretin family. To address the potential function of the repeat containing domain, Mc strains were constructed so as to express chimeric PilQ molecules in which the number of SBR repeats was increased or in which the repeat containing domain was replaced in toto by the corresponding region of the Pseudomonas aeruginosa (Pa) PilQ protein. Although the strain expressing PilQ with an increased number of SBRs was identical to the parent strain in pilus phenotypes, a strain expressing PilQ with the equivalent Pa domain had an eightfold reduction in pilus expression level. The findings suggest that the repeat containing domain of PilQ influences Mc pilus expression quantitatively but not qualitatively.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Molecular microbiology 8 (1993), S. 0 
    ISSN: 1365-2958
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Medicine
    Notes: Three gonococcal genes have been identified which encode proteins with substantial similarities to known components of the type IV pilus biogenesis pathway in Pseudomonas aeruginosa. Two of the genes were identified based on their hybridization with a DNA probe derived from the pilB gene of P. aeruginosa under conditions of reduced stringency. The product of the gonococcal pilF gene is most closely related to the pilus assembly protein PilB of P. aeruginosa while the product of the gonococcal pilT gene is most similar to the PilT protein of P. aeruginosa which is involved in pilus-associated twitching motility and colony morphology. The products of both of these genes display canonical nucleoside triphosphate binding sites and are predicted to be to cytoplasmically localized based on their overall hydrophilicity. The gonococcal pilD gene, identified by virtue of its linkage to the pilF gene, is homologous to a family of prepilin leader peptidase genes. When expressed in Escherichia coli, the gonococcal PilD protein functions to process gonococcal prepilin in a manner consistent with its being gonococcal prepilin peptidase. These results suggest that Neisseria gonorrhoeae is capable of expressing many of the essential elements of a highly conserved protein translocation system and that these gene products are probably involved in pilus biogenesis.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    Osney Mead, Oxford OX2 0EL, UK : Blackwell Science Ltd
    Molecular microbiology 18 (1995), S. 0 
    ISSN: 1365-2958
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Medicine
    Notes: The product of the Neisseria gonorrhoeae omc gene possesses regions homologous to those found in members of a protein superfamily that are associated with the translocation of proteins and DNA-protein complexes across the outer membrane. Amongst its protein homologues, Omc has higher overall homology to PilQ, which is required for type IV pilus expression in Pseudomonas aeruginosa, and OrfE, which is required for sequence-specific DNA uptake by Haemophilus influenzae. The function of Omc, however, is unknown and gonococcal omc mutants have not been described. We constructed gonococcal mutants expressing truncated forms of the protein, and found that these mutants are severely defective for both pilus expression and competence for natural transformation. To be consistent with pre-existing pilus gene nomenclature, we have redesignated the gene pilQ instead of omc, and its product, PilQ instead of Omc. The MS11 gene was sequenced and found to differ from the DNA sequence reported for that of another gonococcal strain; these differences were associated with a repeated DNA element, suggesting a genetic basis for structural variation in PilQ. The results also show that PilQ− mutants are distinct from previously described gonococcal pilus-assembly mutants and P. aeruginosa PilQ− mutants by virtue of their expression of rare pilus filaments. Taking these data into account, PilQ is proposed to function in the terminal steps of organelle biogenesis by acting as a pilus channel or pore.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    ISSN: 1365-2958
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Medicine
    Notes: Understanding the structural biology of type IV pili, fibres responsible for the virulent attachment and motility of numerous bacterial pathogens, requires a detailed understanding of the three-dimensional structure and chemistry of the constituent pilin subunit. X-ray crystallographic refinement of Neisseria gonorrhoeae pilin against diffraction data to 2.6 Å resolution, coupled with mass spectrometry of peptide fragments, reveals phosphoserine at residue 68. Phosphoserine is exposed on the surface of the modelled type IV pilus at the interface of neighbouring pilin molecules. The site-specific mutation of serine 68 to alanine showed that the loss of the phosphorylation alters the morphology of fibres examined by electron microscopy without a notable effect on adhesion, transformation, piliation or twitching motility. The structural and chemical characterization of protein phosphoserine in type IV pilin subunits is an important indication that this modification, key to numerous regulatory aspects of eukaryotic cell biology, exists in the virulence factor proteins of bacterial pathogens. These O-linked phosphate modifications, unusual in prokaryotes, thus merit study for possible roles in pilus biogenesis and modulation of pilin chemistry for optimal in vivo function.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...