ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2012-11-22
    Print ISSN: 0960-3182
    Electronic ISSN: 1573-1529
    Topics: Geosciences
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2020-01-13
    Description: Eating behavior can have an important effect on, and be correlated with, obesity and eating disorders. Eating behavior is usually estimated through self-reporting measures, despite their limitations in reliability, based on ease of collection and analysis. A better and widely used alternative is the objective analysis of eating during meals based on human annotations of in-meal behavioral events (e.g., bites). However, this methodology is time-consuming and often affected by human error, limiting its scalability and cost-effectiveness for large-scale research. To remedy the latter, a novel “Rapid Automatic Bite Detection” (RABiD) algorithm that extracts and processes skeletal features from videos was trained in a video meal dataset (59 individuals; 85 meals; three different foods) to automatically measure meal duration and bites. In these settings, RABiD achieved near perfect agreement between algorithmic and human annotations (Cohen’s kappa κ = 0.894; F1-score: 0.948). Moreover, RABiD was used to analyze an independent eating behavior experiment (18 female participants; 45 meals; three different foods) and results showed excellent correlation between algorithmic and human annotations. The analyses revealed that, despite the changes in food (hash vs. meatballs), the total meal duration remained the same, while the number of bites were significantly reduced. Finally, a descriptive meal-progress analysis revealed that different types of food affect bite frequency, although overall bite patterns remain similar (the outcomes were the same for RABiD and manual). Subjects took bites more frequently at the beginning and the end of meals but were slower in-between. On a methodological level, RABiD offers a valid, fully automatic alternative to human meal-video annotations for the experimental analysis of human eating behavior, at a fraction of the cost and the required time, without any loss of information and data fidelity.
    Electronic ISSN: 2072-6643
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition , Process Engineering, Biotechnology, Nutrition Technology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2020-09-30
    Description: The field of 3D hand pose estimation has been gaining a lot of attention recently, due to its significance in several applications that require human-computer interaction (HCI). The utilization of technological advances, such as cost-efficient depth cameras coupled with the explosive progress of Deep Neural Networks (DNNs), has led to a significant boost in the development of robust markerless 3D hand pose estimation methods. Nonetheless, finger occlusions and rapid motions still pose significant challenges to the accuracy of such methods. In this survey, we provide a comprehensive study of the most representative deep learning-based methods in literature and propose a new taxonomy heavily based on the input data modality, being RGB, depth, or multimodal information. Finally, we demonstrate results on the most popular RGB and depth-based datasets and discuss potential research directions in this rapidly growing field.
    Electronic ISSN: 2076-3417
    Topics: Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2010-02-01
    Description: The seismic isolation code which must be used for all seismic isolated buildings in the United States is conservative in many of its provisions. While seismic isolation is flourishing in other countries, it is underused in the United States. For static analysis and for the selection of time histories, the spectrum is constant-velocity for periods of one second and longer, leading to large displacements for long period systems and forcing the designer to use added damping to reduce these displacements. The damping systems used are hysteretic with the characteristic that damping decreases with increasing displacement. To achieve the damping needed to reduce these large displacements, expected from very rare seismic input, means that at smaller displacements, caused by realistic levels of seismic input, the damping will be very much higher, and there may be stiffening of the isolation system, meaning that the building may not act as isolated and there may be an impact on sensitive internal equipment. This paper shows how highly damped isolation systems are counterproductive to isolation and suggests an alternative approach that will conform to code requirements but ensure that, at moderate earthquake inputs, the equipment remains protected, and the large code-mandated displacements are kept to acceptable levels.
    Print ISSN: 8755-2930
    Electronic ISSN: 1944-8201
    Topics: Architecture, Civil Engineering, Surveying , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2018-07-31
    Description: The seismic response of rocking frames that consist of a rigid beam freely supported on rigid freestanding rectangular piers has received recent attention in the literature. Past studies have investigated the special case where, upon planar rocking motion, the beam maintains contact with the piers at their extreme edges. However, in many real scenarios, the beam-to-pier contact lies closer to the center of the pier, affecting the overall stability of the system. This paper investigates the seismic response of rocking frames under the more general case which allows the contact edge to reside anywhere in-between the center of the pier and its extreme edge. The study introduces a rocking block model that is dynamically equivalent to a rocking frame with vertically symmetric piers of any geometry. The impact of top eccentricity (ie, the distance of the contact edge from the pier's vertical axis of symmetry) on the seismic response of rocking frames is investigated under pulse excitations and earthquake records. It is concluded that the stability of a top-heavy rocking frame is highly influenced by the top eccentricity. For instance, a rocking frame with contacts at the extreme edges of the piers can be more seismically stable than a solitary block that is identical to one of the frame's piers, while a rocking frame with contacts closer to the centers of the piers can be less stable. The concept of critical eccentricity is introduced, beyond which the coefficient of restitution contributes to a greater reduction in the response of a frame than of a solitary pier. © 2018 John Wiley & Sons, Ltd.
    Print ISSN: 0098-8847
    Electronic ISSN: 1096-9845
    Topics: Architecture, Civil Engineering, Surveying
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2015-10-19
    Description: Stable unbonded fiber-reinforced elastomeric isolators (SU-FREIs) exhibit a characteristic horizontal softening and stiffening response, similar to other adaptive devices such as the triple friction pendulum and sliding systems with variable curvature. The transition between the softening and stiffening occurs at a displacement corresponding to a unique deformation known as full rollover. In this paper, the full rollover displacement of SU-FREIs is altered by using modified support geometry (MSG), a geometric modification of the upper and lower supports applied to tailor the hysteresis loops of the isolator. Experimental results are used to calibrate a numerical model of a base-isolated structure. The model demonstrates that the stiffening regime provides minimal restraint against displacements during events that meet or exceed the maximum considered earthquake. A parametric study revealed that the level of stiffening required to restrain displacements during large events is significant. This increase in stiffness is reflected in an increase in the response of the structure and light nonstructural components. Full rollover and MSG is considered advantageous to maintain horizontal stability and provide control over the stiffening of SU-FREIs. © 2016 John Wiley & Sons, Ltd.
    Print ISSN: 0098-8847
    Electronic ISSN: 1096-9845
    Topics: Architecture, Civil Engineering, Surveying
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2016-08-03
    Description: This paper presents an experimental investigation on the seismic response of medical equipment supported on wheels and/or casters. Two pieces of equipment were tested: a large ultrasound machine and a cart carrying smaller medical equipment. In the first phase, the resistance of the wheels and casters of the equipment was characterized through a controlled-displacement procedure on the shake table. In the second phase, an extensive shake table test program was carried out to investigate the seismic response of the equipment. The input signals for the shake table tests included floor motions of a four-story steel braced-frame hospital designed to satisfy seismic requirements of a site in the Los Angeles area. The results of 96 shake table tests reported in this study include the seismic performance of the equipment under both unlocked and locked conditions, located on various floor levels of the building. It was observed that engaging the casters' locking mechanism does not necessarily decrease the relative displacement. The displacement response was sensitive to the excitation intensity and the orientation of the equipment with respect to the input excitation. Based on the experimental observations, appropriate structural engineering demand parameters associated with the relative displacement and relative velocity demands of the equipment are proposed and used to develop conditional probability curves. Finally, in an effort to extend the results of this experimental study to similar equipment on wheels/casters, the performance of a simple numerical model in predicting the peak seismic demands is evaluated. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
    Print ISSN: 0098-8847
    Electronic ISSN: 1096-9845
    Topics: Architecture, Civil Engineering, Surveying
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2012-01-27
    Description: This paper presents results from a comprehensive experimental program on medium-size and large-size fluid dampers in an effort to extract their force output during cyclic loading by simply measuring the strain on the damper housing and the end-spacer of the damper. The paper first discusses the stress path within the damper and, subsequently via the use of linear elasticity, shows that the experimental data obtained with commercially available strain gauges yield a force output of the damper that is in good agreement with the readings from the load cell. This comparison is achieved via the use of a position and velocity transducer, which combines good accuracy together with robust performance in a marine environment. The paper then examines the performance of a portable data acquisition system that can be used to collect and transmit data from a damper installed on a bridge to a nearby location (order of a km) where data are collected via either a wired or a wireless Local Area Network (LAN). Alternatively, the data may be transmitted to any remote location via mobile telecommunication networks; however, this requires leased telephone lines. The data show that the proposed arrangement is promising for monitoring in situ the force output of fluid dampers and detecting possible loss of their energy dissipation capability. © 2012 John Wiley & Sons, Ltd.
    Print ISSN: 0098-8847
    Electronic ISSN: 1096-9845
    Topics: Architecture, Civil Engineering, Surveying
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2014-10-20
    Description: Base isolation has been established as the seismic design approach of choice when it comes to protecting nonstructural contents. However, while this protection technology has been widely shown to reduce seismic demands on attached oscillatory equipment and contents (EC), its effectiveness in controlling the response of freestanding EC that are prone to sliding has not been investigated. This study examines the seismic behavior of sliding EC inside base-isolated buildings subjected to broadband ground motions. The effect of isolation system properties on the response of sliding EC with various friction coefficients is examined. Two widely used isolation models are considered: viscously damped linear elastic and bilinear. The study finds isolation to be generally effective in reducing seismic demands on sliding EC, but it also exposes certain situations where isolation in fact increases demands on EC, most notably for low friction coefficients and high earthquake intensities. Damping at the isolation level is effective in controlling the EC sliding displacements, although damping over about 20% is found to be superfluous. The study identifies a physically motivated dimensionless intensity measure and engineering demand parameter for sliding equipment in base-isolated buildings subjected to broadband ground motions. Finally, the paper presents easy-to-use design fragility curves and an example that illustrates how to use them. © 2014 John Wiley & Sons, Ltd.
    Print ISSN: 0098-8847
    Electronic ISSN: 1096-9845
    Topics: Architecture, Civil Engineering, Surveying
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2009-05-01
    Description: This paper presents results of a comprehensive experimental program on the seismic response of full-scale freestanding laboratory equipment. First, quasi-static experiments are conducted to examine the mechanical behavior of the contact interface between the laboratory equipment and floors. Based on the experimental results, the response analysis that follows adopts two idealized contact friction models: the elastoplastic model and the classical Coulomb friction model. Subsequently, the paper presents shake table test results of full-scale freestanding equipment subjected to ground and floor motions of hazard levels with corresponding displacements that can be accommodated by the shake table at the UC Berkeley Earthquake Engineering Research Center. For the equipment tested, although some rocking is observed, sliding is the predominant mode of response, with sliding displacements reaching up to 60 cm. Numerical simulations with the proposed models are performed. Finally, the paper identifies a physically motivated intensity measure and the associated engineering demand parameter with the help of dimensional analysis and presents ready-to-use fragility curves. Copyright © 2008 John Wiley & Sons, Ltd.
    Print ISSN: 0098-8847
    Electronic ISSN: 1096-9845
    Topics: Architecture, Civil Engineering, Surveying
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...