ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1
    Publication Date: 2019-03-25
    Description: Anthropogenic greenhouse gases and aerosols are associated with climate change and human health risks. We used a global model to estimate the climate and public health outcomes attributable to fossil fuel use, indicating the potential benefits of a phaseout. We show that it can avoid an excess mortality rate of 3.61 (2.96–4.21) million per year from outdoor air pollution worldwide. This could be up to 5.55 (4.52–6.52) million per year by additionally controlling nonfossil anthropogenic sources. Globally, fossil-fuel-related emissions account for about 65% of the excess mortality, and 70% of the climate cooling by anthropogenic aerosols. The chemical influence of air pollution on aeolian dust contributes to the aerosol cooling. Because aerosols affect the hydrologic cycle, removing the anthropogenic emissions in the model increases rainfall by 10–70% over densely populated regions in India and 10–30% over northern China, and by 10–40% over Central America, West Africa, and the drought-prone Sahel, thus contributing to water and food security. Since aerosols mask the anthropogenic rise in global temperature, removing fossil-fuel-generated particles liberates 0.51(±0.03) °C and all pollution particles 0.73(±0.03) °C warming, reaching around 2 °C over North America and Northeast Asia. The steep temperature increase from removing aerosols can be moderated to about 0.36(±0.06) °C globally by the simultaneous reduction of tropospheric ozone and methane. We conclude that a rapid phaseout of fossil-fuel-related emissions and major reductions of other anthropogenic sources are needed to save millions of lives, restore aerosol-perturbed rainfall patterns, and limit global warming to 2 °C.
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2011-04-07
    Print ISSN: 1475-7508
    Electronic ISSN: 1475-7516
    Topics: Physics
    Published by Institute of Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2006-05-10
    Print ISSN: 0305-4470
    Electronic ISSN: 1361-6447
    Topics: Mathematics , Physics
    Published by Institute of Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2014-01-24
    Description: The effects of absorbing aerosols on the atmospheric radiation budget and dynamics over the Eastern Mediterranean region are studied using satellites and ground-based observations, and model calculations, under summer conditions. Climatology of aerosol optical depth (AOD), single scattering albedo (SSA) and size parameters were analyzed using multi-year (1999–2012) observations from MODIS, MISR and AERONET. CALIOP-derived aerosol vertical distributions and their classifications are used to calculate the AOD of 4 dominant aerosol types: dust, polluted dust, polluted continental and marine aerosol over the region. The seasonal mean (June–August 2010) AODs are 0.22 ± 0.02, 0.11 ± 0.04, 0.10 ± 0.04 and 0.06 ± 0.01 for polluted dust, polluted continental, dust and marine aerosol, respectively. Changes in the atmospheric temperature profile as a function of absorbing aerosol loading were derived for the same period using observations from the AIRS satellite. We inferred heating rates in the aerosol layer of ~1.7 ± 0.8 K day−1 between 925 and 850 hPa, which is attributed to aerosol absorption of incoming solar radiation. Radiative transfer model (RTM) calculations show significant atmospheric warming for dominant absorbing aerosol over the region. A maximum atmospheric forcing of +16.5 ± 7.5 W m−2 is calculated in the case of polluted dust, followed by polluted continental (+7.6 ± 4.4 W m−2) and dust (+7.1 ± 4.3 W m−2). RTM-derived heating rate profiles for dominant absorbing aerosol show warming of 0.1–0.9 K day−1 in the aerosol layer (〈 3.0 km altitudes), which primarily depend on AODs of the different aerosol types. Diabatic heating due to absorbing aerosol stabilizes the lower atmosphere, which could significantly reduce the atmospheric ventilation. These conditions can enhance the "pollution pool" over the Eastern Mediterranean.
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2015-11-27
    Description: We introduce a framework to efficiently parameterize the aerosol water uptake for mixtures of semi-volatile and non-volatile compounds, based on the coefficient, νi. This solute specific coefficient was introduced in Metzger et al. (2012) to accurately parameterize the single solution hygroscopic growth, considering the Kelvin effect – accounting for the water uptake of concentrated nanometer sized particles up to dilute solutions, i.e., from the compounds relative humidity of deliquescence (RHD) up to supersaturation (Köhler-theory). Here we extend the νi-parameterization from single to mixed solutions. We evaluate our framework at various levels of complexity, by considering the full gas-liquid-solid partitioning for a comprehensive comparison with reference calculations using the E-AIM, EQUISOLV II, ISORROPIA II models as well as textbook examples. We apply our parameterization in EQSAM4clim, the EQuilibrium Simplified Aerosol Model V4 for climate simulations, implemented in a box model and in the global chemistry-climate model EMAC. Our results show: (i) that the νi-approach enables to analytically solve the entire gas-liquid-solid partitioning and the mixed solution water uptake with sufficient accuracy, (ii) that, e.g., pure ammonium nitrate and mixed ammonium nitrate – ammonium sulfate mixtures can be solved with a simple method, and (iii) that the aerosol optical depth (AOD) simulations are in close agreement with remote sensing observations for the year 2005. Long-term evaluation of the EMAC results based on EQSAM4clim and ISORROPIA II will be presented separately.
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2016-01-15
    Description: We use the combined Dark Target/Deep Blue aerosol optical depth (AOD) satellite product of the Moderate-resolution Imaging Spectroradiometer (MODIS) collection 6 to study trends over the Middle East between 2000 and 2015. Our analysis corroborates a previously identified positive AOD trend over large parts of the Middle East during the period 2001 to 2012. We relate the annual AOD to precipitation, soil moisture and surface winds to identify regions where these attributes are directly related to the AOD over Saudi Arabia, Iraq and Iran. Regarding precipitation and soil moisture, a relatively small area in and surrounding Iraq turns out to be of prime importance for the AOD over these countries. Regarding surface wind speed, the African Red Sea coastal area is relevant for the Saudi Arabian AOD. Using multiple linear regression we show that AOD trends and interannual variability can be attributed to soil moisture, precipitation and surface winds, being the main factors controlling the dust cycle. Our results confirm the dust driven AOD trends and variability, supported by a decreasing MODIS-derived Ångström exponent and a decreasing AERONET-derived fine mode fraction that accompany the AOD increase over Saudi Arabia. The positive AOD trend relates to a negative soil moisture trend. As a lower soil moisture translates into enhanced dust emissions, it is not needed to assume growing anthropogenic aerosol and aerosol precursor emissions to explain the observations. Instead, our results suggest that increasing temperature and decreasing relative humidity in the last decade have promoted soil drying, leading to increased dust emissions and AOD; consequently an AOD increase is expected due to climate change.
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2014-05-16
    Description: The modelling of aerosol radiative forcing is a major cause of uncertainty in the assessment of global and regional atmospheric energy budgets and climate change. One reason is the strong dependence of the aerosol optical properties on the mixing state of aerosol components like black carbon and sulphates. Using a new column version of the aerosol optical properties and radiative transfer code of the atmospheric chemistry-climate model EMAC, we study the radiative transfer applying various mixing states. The aerosol optics code builds on the AEROPT submodel which assumes homogeneous internal mixing utilising the volume average refractive index mixing rule. We have extended the submodel to additionally account for external mixing, partial external mixing and multi-layered particles. Furthermore, we have implemented the volume average dielectric-constant and Maxwell Garnett Mixing rule. We performed regional case studies considering columns over China, India and Africa, corroborating much stronger absorption by internal than external mixtures. Well mixed aerosol is a good approximation for particles with a black carbon core, whereas particles with black carbon at the surface absorb significantly less. Based on a model simulation for the year 2005 we calculate that the global aerosol direct radiative-forcing for homogeneous internal mixing differs from that for external mixing by about 0.5 W m−2.
    Print ISSN: 1991-9611
    Electronic ISSN: 1991-962X
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2014-10-28
    Description: The modelling of aerosol radiative forcing is a major cause of uncertainty in the assessment of global and regional atmospheric energy budgets and climate change. One reason is the strong dependence of the aerosol optical properties on the mixing state of aerosol components, such as absorbing black carbon and, predominantly scattering sulfates. Using a new column version of the aerosol optical properties and radiative-transfer code of the ECHAM/MESSy atmospheric-chemistry–climate model (EMAC), we study the radiative transfer applying various mixing states. The aerosol optics code builds on the AEROPT (AERosol OPTical properties) submodel, which assumes homogeneous internal mixing utilising the volume average refractive index mixing rule. We have extended the submodel to additionally account for external mixing, partial external mixing and multilayered particles. Furthermore, we have implemented the volume average dielectric constant and Maxwell Garnett mixing rule. We performed regional case studies considering columns over China, India and Africa, corroborating much stronger absorption by internal than external mixtures. Well-mixed aerosol is a good approximation for particles with a black-carbon core, whereas particles with black carbon at the surface absorb significantly less. Based on a model simulation for the year 2005, we calculate that the global aerosol direct radiative forcing for homogeneous internal mixing differs from that for external mixing by about 0.5 W m−2.
    Print ISSN: 1991-959X
    Electronic ISSN: 1991-9603
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2014-07-16
    Description: The effects of absorbing aerosols on the atmospheric radiation budget and dynamics over the eastern Mediterranean region are studied using satellites and ground-based observations, and radiative transfer model calculations, under summer conditions. Climatology of aerosol optical depth (AOD), single scattering albedo (SSA) and size parameters were analyzed using multi-year (1999–2012) observations from Moderate Resolution Imaging Spectroradiometer (MODIS), Multi-angle Imaging SpectroRadiometer (MISR) and AErosol RObotic NETwork (AERONET). Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP)-derived aerosol vertical distributions and their classifications are used to calculate the AOD of four dominant aerosol types: dust, polluted dust, polluted continental, and marine aerosol over the region. The seasonal mean (June–August 2010) AODs are 0.22 ± 0.02, 0.11 ± 0.04, 0.10 ± 0.04 and 0.06 ± 0.01 for polluted dust, polluted continental, dust and marine aerosol, respectively. Changes in the atmospheric temperature profile as a function of absorbing aerosol loading were derived for the same period using observations from the AIRS satellite. We inferred heating rates in the aerosol layer of ~1.7 ± 0.8 K day−1 between 925 and 850 hPa, which is attributed to aerosol absorption of incoming solar radiation. Radiative transfer model (RTM) calculations show significant atmospheric warming for dominant absorbing aerosol over the region. A maximum atmospheric forcing of +16.7 ± 7.9 Wm−2 is calculated in the case of polluted dust, followed by dust (+9.4 ± 4.9 Wm−2) and polluted continental (+6.4 ± 4.5 Wm−2). RTM-derived heating rate profiles for dominant absorbing aerosol show warming of 0.1–0.9 K day−1 in the aerosol layer (〈 3.0 km altitudes), which primarily depend on AODs of the different aerosol types. Diabatic heating due to absorbing aerosol stabilizes the lower atmosphere, which could significantly reduce the atmospheric ventilation. These conditions can enhance the "pollution pool" over the eastern Mediterranean.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    In:  XXVIII General Assembly of the International Union of Geodesy and Geophysics (IUGG)
    Publication Date: 2023-08-09
    Description: Precipitation in arid regions can have large societal impacts. On the one hand, when rainfall comes in high intensities, it can lead to deadly floods. On the other hand, precipitation can also refill freshwater resources that are typically scarce in these dry regions. Atmospheric processes that can lead to precipitation in arid regions are often studied at the regional scale and remain poorly understood from a global perspective. In this study, we identify Rossby wave breaking based on the combination of potential vorticity streamers and cutoffs in ERA5 reanalysis data, and we quantify the contribution of this atmospheric process to precipitation at the global scale using different datasets. Rossby wave breaking significantly contributes to 80-90% of daily precipitation extremes and to 70-80% of total precipitation amounts in arid regions equatorward and downstream of the midlatitude storm tracks. Portions of land surface area where Rossby wave breaking significantly contributes to precipitation increases from 10-25% in humid regions to about 50% in regions with a hyper arid climate. In subtropical arid regions, Rossby wave breaking contributes to much of the precipitation during the transition seasons and winter, whereas extratropical arid regions receive precipitation under the influence of Rossby wave breaking throughout the year. This study shows that Rossby wave breaking is a key driver of precipitation in arid regions, offering new opportunities to improve medium-range prediction of flood hazards and to better understand the role of atmospheric dynamics in projections and uncertainties of future precipitation changes in climate model simulations.
    Language: English
    Type: info:eu-repo/semantics/conferenceObject
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...