ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1
    Publication Date: 2018-06-11
    Description: A crucial step in planet formation is the growth of solid bodies in the sub-millimeter to meter size range: too large to condense directly from the gas phase and too small to interact meaningfully through mutual gravitation. The existence of planets in our solar system demands that some growth process once operated in that size regime, but the mechanism has not been positively identified. Whatever it was, it worked despite nebular turbulence that was probably strong enough to break dust structures cohering by weak surface forces and to disrupt small-scale gravitational collapse via the Goldreich-Ward mechanism. Recent work on this topic, reviewed in, has focussed on ice and frost in the laboratory, silicate dust in drop-tower and orbital microgravity environments, and numerically modelled magnetic particles.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Lunar and Planetary Science XXXV: Origin of Planetary Systems; LPI-Contrib-1197
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...