ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Collection
Publisher
Years
  • 1
    Publication Date: 2016-04-22
    Description: Hydrologic conditions are a major controlling factor for carbon exchange processes in high-latitude ecosystems. The presence or absence of water-logged conditions can lead to significant shifts in ecosystem structure and carbon cycle processes. In this study, we compared growing season CO2 fluxes of a wet tussock tundra ecosystem from an area affected by decadal drainage and an undisturbed area on the Kolyma floodplain in northeastern Siberia. For this comparison we found the CO2 uptake to be systematically reduced within the drained area, with a minor increase in photosynthetic uptake due to a higher abundance of shrubs outweighed by a more pronounced increase in respiration due to warmer near-surface soil layers. Carbon dioxide exchange with the atmosphere over this disturbed part of the tundra has rebounded from the strong reduction of fluxes immediately following the drainage disturbance in 2005. This indicates that the local permafrost ecosystem is capable of adapting to significantly different hydrologic conditions without losing its capacity to act as a net sink for CO2 over the growing season. The comparison of undisturbed CO2 flux rates from 2013–2015 to the period of 2002–2004 indicates that overall CO2 exchange with the atmosphere was intensified. Analyzing trends in component fluxes (ecosystem respiration and gross primary production) over the past decade, we found that net changes in CO2 exchange fluxes are dominated by a major increase in photosynthetic uptake, resulting in a stronger CO2 sink in 2013–2015. Application of a MODIS-based classification scheme to separate the growing season into four sub-seasons improved the interpretation of interannual variability, and helps in illustrating the systematic shifts in CO2 uptake patterns that have occurred in this ecosystem over the past 10 years.
    Print ISSN: 1810-6277
    Electronic ISSN: 1810-6285
    Topics: Biology , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...