ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Collection
Publisher
Years
  • 1
    ISSN: 0006-3525
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: The fluorescence polarization method was applied to the investigation of the micro-Brownian motion of amylose chains having a wide range of degree of polymerization (DP). We prepared two types of fluorescent conjugates of amylose: amylose conjugated with fluorescein randomly throughout the chain (F-amylose) and amylose conjugated locally on a terminal segment (t-F-amylose). The degree of fluorescence polarization of these conjugates was measured by changing the solvent viscosity at a constant temperature (25°C). The data obtained were analyzed by a Perrin-type equation to calculate the mean rotational relaxation time, 〈ρ〉. By examination of the plots of 〈ρ〉 vs DP, and by comparison of 〈ρ〉 with the theoretical rotational relaxation time of the whole molecule at a given DP, it was found that 〈ρ〉 mainly reflects the segmental motion of the amylose chain in the high-DP range. Thus, the fact that 〈ρ〉 for t-F-amylose is much smaller than that for F-amylose at a sufficiently high DP shows that a terminal segment undergoes a more rapid micro-Brownian motion than interior segments. In the low-DP range, we felt that the rotational diffusion of the whole molecule contributes significantly to the relaxation process. We also examined, for comparison, the segmental motion of dextran and pullulan in a similar manner and found that these segmental motions are more rapid than those of amylose. Based on the results obtained, the segmental mobility and conformation of the amylose molecule are discussed in relation to its chain length.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...