ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-01-01
    Description: A suite of modern atmospheric reanalyses is analyzed to determine how they represent North American supercell environments. This analysis is performed by comparing a database of Rapid Update Cycle (RUC-2) proximity soundings with profiles derived from the nearest grid point in each reanalysis. Parameters are calculated using the Sounding and Hodograph Analysis and Research Program in Python (SHARPpy), an open-source Python sounding-analysis package. Representation of supercell environments varies across the reanalyses, and the results have ramifications for climatological studies that use these datasets. In particular, thermodynamic parameters such as the convective available potential energy (CAPE) show the widest range in biases, with reanalyses falling into two camps. The North American Regional Reanalysis (NARR) and the Japanese 55-year Reanalysis (JRA-55) are similar to RUC-2, but other reanalyses have a substantial negative bias. The reasons for these biases vary and range from thermodynamic biases at the surface to evidence of convective contamination. Overall, it is found that thermodynamic biases feed back to other convective parameters that incorporate CAPE directly or indirectly via the effective layer. As a result, significant negative biases are found for indices such as the supercell composite parameter. These biases are smallest for NARR and JRA-55. Kinematic parameters are more consistent across the reanalyses. Given the issues with thermodynamic properties, better segregation of soundings by storm type is found for fixed-layer parameters than for effective-layer shear parameters. Although no reanalysis can exactly reproduce the results of earlier RUC-2 studies, many of the reanalyses can broadly distinguish between environments that are significantly tornadic versus nontornadic.
    Print ISSN: 1558-8424
    Electronic ISSN: 1558-8432
    Topics: Geography , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2010-10-01
    Description: Three years of surface and Geostationary Operational Environmental Satellite (GOES) data from the Department of Energy Atmospheric Radiation Measurement (ARM) Southern Great Plains (SGP) site are used to evaluate the NASA GISS Single Column Model (SCM) simulated clouds from January 1999 to December 2001. The GOES-derived total cloud fractions for both 0.5° and 2.5° grid boxes are in excellent agreement with surface observations, suggesting that ARM point observations can represent large areal observations. Low (6 km) levels of cloud fractions, however, have negative biases as compared to the ARM results due to multilayer cloud scenes that can either mask lower cloud layers or cause misidentifications of cloud tops. Compared to the ARM observations, the SCM simulated most midlevel clouds, overestimated low clouds (4%), and underestimated total and high clouds by 7% and 15%, respectively. To examine the dependence of the modeled high and low clouds on the large-scale synoptic patterns, variables such as relative humidity (RH) and vertical pressure velocity (omega) from North American Regional Reanalysis (NARR) data are included. The successfully modeled and missed high clouds are primarily associated with a trough and ridge upstream of the ARM SGP, respectively. The PDFs of observed high and low occurrence as a function of RH reveal that high clouds have a Gaussian-like distribution with mode RH values of ∼40%–50%, whereas low clouds have a gammalike distribution with the highest cloud probability occurring at RH ∼75%–85%. The PDFs of modeled low clouds are similar to those observed; however, for high clouds the PDFs are shifted toward higher values of RH. This results in a negative bias for the modeled high clouds because many of the observed clouds occur at RH values below the SCM-specified stratiform parameterization threshold RH of 60%. Despite many similarities between PDFs derived from the NARR and ARM forcing datasets for RH and omega, differences do exist. This warrants further investigation of the forcing and reanalysis datasets.
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2011-09-01
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2015-02-15
    Print ISSN: 0177-798X
    Electronic ISSN: 1434-4483
    Topics: Geosciences , Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2013-03-23
    Print ISSN: 0177-798X
    Electronic ISSN: 1434-4483
    Topics: Geosciences , Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-19
    Description: Land-atmosphere (L-A) interactions play a critical role in determining the diurnal evolution of land surface and planetary boundary layer (PBL) temperature and moisture states and fluxes. In turn, these interactions regulate the strength of the connection between surface moisture and precipitation in a coupled system. To address deficiencies in numerical weather prediction and climate models due to improper treatment of L-A interactions, recent studies have focused on development of diagnostics to quantify the strength and accuracy of the land-PBL coupling at the process-level. In this study, a diagnosis of the nature and impacts of local land-atmosphere coupling (LoCo) during dry and wet extreme conditions is presented using a combination of models and observations during the summers of2006-7 in the U.S. Southern Great Plains. Specifically, the Weather Research and Forecasting (WRF) model has been coupled to NASA's Land Information System (LIS), which provides a flexible and high resolution representation and initialization of land surface physics and states. A range of diagnostics exploring the links and feedbacks between soil moisture and precipitation are examined for the dry/wet regimes of this region, along with the behavior and accuracy of different land-PBL scheme couplings under these conditions. Results demonstrate how LoCo diagnostics can be applied to coupled model components in the context of their integrated impacts on the process-chain connecting the land surface to the PBL and support of hydrological anomalies.
    Keywords: Geophysics
    Type: GSFC.ABS.5608.2011
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-19
    Description: Land-atmosphere (L-A) interactions play a critical role in determining the diurnal evolution of land surface and planetary boundary layer (PBL) temperature and moisture states and fluxes. In turn, these interactions regulate the strength of the connection between surface moisture and precipitation in a coupled system. To address deficiencies in numerical weather prediction and climate models due to improper treatment of L-A interactions, recent studies have focused on development of diagnostics to quantify the strength and accuracy of the land-PBL coupling at the process-level. In this study, a diagnosis of the nature and impacts oflocalland-atmosphere coupling (LoCo) during dry and wet extreme conditions is presented using a combination of models and observations during the summers of2006-7 in the U.S. Southern Great Plains. Specifically, the Weather Research and Forecasting (WRF) model has been coupled to NASA's Land Information System (LIS), which provides a flexible and high-resolution representation and initialization of land surface physics and states. A range of diagnostics exploring the links and feedbacks between soil moisture and precipitation are examined for the dry/wet regimes of this region, along with the behavior and accuracy of different land-PBL scheme couplings under these conditions. In addition, we examine the impact of improved specification ofland surface states, anomalies, and fluxes that are obtained through the use of a hew optimization and uncertainty module in LIS, on the L-A coupling in WRF forecasts. Results demonstrate how LoCo diagnostics can be applied to coupled model components in the context of their integrated impacts on the process-chain connecting the land surface to the PBL and support of hydrological anomalies.
    Keywords: Meteorology and Climatology
    Type: GSFC.ABS.5611.2011 , 26th AMS Conference on Hydrology; Jan 22, 2012 - Jan 26, 2012; New Orleans, LA; United States|24th AMS Conference on Climate Variability and Change; Jan 22, 2012 - Jan 26, 2012; New Orleans, LA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-12
    Description: In this study, the atmospheric state, precipitation, cloud fraction, and radiative fluxes from Modern Era Retrospective-analysis for Research and Applications (MERRA) and North American Regional Reanalysis (NARR) are collected and compared with the Atmospheric Radiation Measurement (ARM) Southern Great Plains (SGP) continuous forcing during the period 1999-2001. For the atmospheric state, the three datasets have excellent agreement for the horizontal wind components and air temperature. NARR and ARM have generally good agreement for humidity, except for several biases in the PBL and in the upper troposphere. MERRA, on the other hand, suffers from a year-round negative bias in humidity except for the month of June. For the vertical pressure velocity, significant differences exist with the largest biases occurring during the spring upwelling and summer downwelling periods. Although NARR and MERRA share many resemblances to each other, ARM outperforms these reanalyses in terms of correlation with cloud fraction. Because the ARM forcing is constrained by observed precipitation that gives the adequate mass, heat, and moisture budgets, much of the precipitation (specifically during the late spring/early summer) is caused by smaller-scale forcing that is not captured by the reanalyses. Both NARR and MERRA capture the seasonal variation of CF observed by ARM radar-lidar and GOES with high correlations (0.92-0.78), but having negative biases of 14% and 3%, respectively. Compared to the ARM observations, MERRA shows a better agreement for both SW and LW fluxes except for LW-down (due to a negative bias in water vapor), NARR has significant positive bias for SW-down and negative bias for LW-down under clear- and all-sky conditions . The NARR biases result from a combination of too few clouds and a lack of sufficient extinction by aerosols and water vapor in the atmospheric column. The results presented here represent only one location for a limited time period, and more comparisons at different locations and longer time period are needed.
    Keywords: Meteorology and Climatology
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-07-19
    Description: Land-atmosphere interactions play a critical role in determining the. diurnal evolution of both planetary boundary layer (PBL) and land surface temperature and moisture states. The degree of coupling between the land surface and PBL in numerical weather prediction and climate models remains largely unexplored and undiagnosed due to the complex interactions and feedbacks present across a range of scales. Further, uncoupled systems or experiments (e.g., the Project for Intercomparison of Land Parameterization Schemes, PILPS) may lead to inaccurate water and energy cycle process understanding by neglecting feedback processes such as PBL-top entrainment. In this study, a framework for diagnosing local land-atmosphere coupling (LoCo) is presented using a coupled mesoscale model with a suite of PBL and land surface model (LSM) options along with observations during the summers of 200617 in the U.S. Southern Great Plains. Specifically, the Weather Research and Forecasting (WRF) model has been coupled to NASA's Land Information System (LIS), which provides a flexible and high-resolution representation and initialization of land surface physics and states. A range of diagnostics exploring the links and feedbacks between soil moisture and precipitation are examined for the dry/wet extremes of this region, along with the sensitivity of PBL-LSM coupling to perturbations in soil moisture. As such, this methodology provides a potential pathway to study factors controlling local land-atmosphere coupling (LoCo) using the LIS-WRF system, which is serving as a testbed for LoCo experiments to evaluate coupling diagnostics within the community.
    Keywords: Geophysics
    Type: GSFC.OVPR.4925.2011 , 3rd Integrated Land Ecosyslem-Atmosphere Processes Study Science Conference; Sep 18, 2011 - Sep 23, 2011; Garmisch-Partenkirchen; Germany
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-07-19
    Description: The degree of coupling between the land surface and PBL in NWP models remains largely undiagnosed due to the complex interactions and feedbacks present across a range of scales. In this study, a framework for diagnosing local land-atmosphere coupling (LoCo) is presented using a coupled mesoscale model with observations during the summers of 2006/7 in the U.S. Southern Great Plains. Specifically, the Weather Research and Forecasting (WRF) model has been coupled to NASA's Land Information System (LIS), which enables a suite of PBL and land surface model (LSM) options along provides a flexible and high-resolution representation and initialization of land surface physics and states. This coupling is one component of a larger project to develop a NASA-Unified WRF (NU-WRF) system. A range of diagnostics exploring the feedbacks between soil moisture and precipitation are examined for the dry/wet extremes, along with the sensitivity of PBL-LSM coupling to perturbations in soil moisture.
    Keywords: Geosciences (General)
    Type: GSFC.OVPR.4432.2011 , Annual Weather Research and Forecasting National Center of Atmospheric Research Workshop; Jun 19, 2011 - Jun 21, 2011; Bolder, CO; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...