ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Collection
Publisher
Years
  • 1
    Publication Date: 1993-01-01
    Print ISSN: 0177-7971
    Electronic ISSN: 1436-5065
    Topics: Geography , Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Meteorology and atmospheric physics 51 (1993), S. 73-99 
    ISSN: 1436-5065
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geography , Physics
    Notes: Summary We examine a family of tall (up to 20 km) cumulonimbus complexes that develop almost daily over an adjacent pair of flat islands in the Maritime Continent region north of Darwin, Australia, and that are known locally as “Hectors”. Nine cases observed by a rawinsonde network, surface observations (including radiation and soil measurements), the TRMM/TOGA radar, and one day of aircraft photography are used to analyse the development, rainfall, surface energy budgets, and vertical structure of these convective systems. The systems undergo convective merging which is similar to that observed in previous Florida studies and is multiplicative in terms of rainfall. About 90% of the total rainfall comes from the merged systems, which comprise less than 10% of convective systems, and this has implications for the manner in which tropical rainfall is parameterised in largerscale numerical models. By comparison to the West Indies, GATE, and Florida, the Hector environment contains a weaker basic flow, with less vertical shear. The main thermodynamic difference is that the Darwin area has an unstable upper troposphere and very high tropopause. Numerical modelling results support earlier observations of updraughts in excess of 30 ms−1 in this region, but show that only modest convective drafts are experienced below the freezing level (5 km). The surface fluxes over the islands are estimated from a Monash University study to be mainly in latent form from evapotranspiration, with a Bowen ratio only slightly larger than that commonly observed over oceans. These surface fluxes are crucial to the development of a suitable mixed layer to support deep convection. The flux estimates agree with the observed changes below the cloud base and provide sufficient information for calculations of the bounds on precipitation efficiency. Of particular interest are the observations of Hector development on a day when the islands were under a dense cirrus overcast. We find that the islands still provide sufficient net sensible and latent heat fluxes to initiate convection.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...