ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Collection
Language
Years
  • 1
    Publication Date: 2021-06-02
    Description: Models of the glacial-isostatic adjustment (GIA) to past ice-mass changes exhibit large differences in north-east Greenland owing to insufficient knowledge about glacial history and Earth rheology. The GIA uncertainties feed back to uncertainties in present-day mass-balance estimates from satellite gravimetry. Geodetic Global Navigation Satellite System (GNSS) measurements allow to directly observe displacement of bedrock. We present results from repeated and continuous GNSS measurements conducted within five measurement campaigns between 2008 and 2017. We used the observed uplift rates to validate different GIA models in conjunction with estimates of the elastic response of the solid Earth to present-day ice-mass changes. To determine present-day ice-mass changes and the associated elastic deformations, we combined satellite altimetry data from CryoSat-2 with satellite gravimetry data from the Gravity Recovery and Climate Experiment for the entire Greenland Ice Sheet (GrIS) and included peripheral glaciers and ice caps. The different GIA models were consistently used in all processing steps. The GNSS measurements in north-east Greenland revealed uplift rates in the range of 2.8 to 8.9 mm yr−1. The comparison of the total displacement predicted by GIA and elastic modeling with the GNSS-based displacement clearly favors GIA models that show low rates (0.7–4.4 mm yr−1 at the GNSS sites) against GIA models with higher rates of up to 8.3 mm yr−1. The correction due to the favored GIA model in north-east Greenland results in an ice-mass loss of 233 ± 43 Gt yr−1 for the GrIS including peripheral glaciers over the period July 2010 to June 2017.
    Language: English
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-12-06
    Type: info:eu-repo/semantics/conferenceObject
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2023-06-20
    Description: Geodetic GNSS measurements on bedrock allow to determine secular trends of solid Earth deformation and, therefore, provide valuable constraints for modelling glacial-isostatic adjustment (GIA). There is a high discrepancy in GIA model predictions of vertical displacement rates in Antarctica regarding their spatial pattern and magnitude. While in West Antarctica, in the Antarctic Peninsula and in parts of Victoria Land a comparably large number of GNSS stations exists, East Antarctica exhibits big gaps in the GNSS coverage. The sparsity of bedrock outcrops and the difficult accessibility and logistics are reasons for this.In order to improve the spatial coverage we established a GNSS network in western and central Dronning Maud Land, East Antarctica, with first observations carried out already in the mid-1990ies and a latest observation campaign realized in the Antarctic season 2022/2023. Here we present results of a consistent processing of all episodic and permanent GNSS measurements in that region. We discuss how the long time basis of more than 20 years helps to improve the accuracy of the secular trend inferred from the GNSS time series. We remove the elastic deformation due to present-day ice-mass changes utilizing satellite altimetry observations and surface mass balance models. We discuss our resulting trends in comparison to existing GIA models in a region sparsely covered by GNSS prior to this study.
    Language: English
    Type: info:eu-repo/semantics/conferenceObject
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...