ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1365-2958
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Medicine
    Notes: Enteropathogenic Escherichia coli (EPEC) produces attaching and effacing lesions (AE) on epithelial cells. The genes involved in the formation of the AE lesions are contained within a pathogenicity island named the locus of enterocyte effacement (LEE). The LEE comprises 41 open reading frames organized in five major operons: LEE1, LEE2, LEE3, LEE4 and tir. The first gene of the LEE1 operon encodes a transcription activator of the other LEE operons that is called the LEE-encoded regulator (Ler). The LEE2 and LEE3 operons are divergently transcribed with overlapping −10 promoter regions, and gene fusion studies have shown that they are both activated by Ler. Deletion analysis, using lacZ reporter fusions, of the LEE2 and LEE3 promoters demonstrated that deletions extending closer to the LEE2 transcription start site than −247 bp lead to loss of activation by Ler, whereas only 70 bp upstream of the LEE3 transcription start site is required for Ler-mediated activation. We have purified Ler as a His-tagged protein and used it to perform DNA-binding assays with LEE2 and LEE3. We observed that Ler bound to a DNA fragment containing the −300 to +1 region of LEE2; however, it failed to bind to a DNA fragment containing the −300 to +1 region of LEE3, suggesting that Ler activates both operons by only binding to the regulatory region upstream of LEE2. The Ler-activatable LEE3::lacZ fusions extended to what would be −246 bp of the LEE2 operon. A lacZ fusion from the −300 to +1 region of LEE3 failed to be activated by Ler, consistent with our hypothesis that Ler activates the expression of LEE2 and LEE3 by binding to a region located downstream of the LEE3 transcription start site. DNase I footprinting revealed that Ler protected a region of 121 bp upstream of LEE2. Purified Ler mutated in the coiled-coil domain was unable to activate transcription and to bind to the LEE2 regulatory region. These data indicate that Ler may bind as a multimer to LEE2 and activate both divergent operons by a novel mechanism potentially involving changes in the DNA structure.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Microbiology 54 (2000), S. 641-679 
    ISSN: 0066-4227
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology
    Notes: Abstract Virulence factors of pathogenic bacteria (adhesins, toxins, invasins, protein secretion systems, iron uptake systems, and others) may be encoded by particular regions of the prokaryotic genome termed pathogenicity islands. Pathogenicity islands were first described in human pathogens of the species Escherichia coli, but have recently been found in the genomes of various pathogens of humans, animals, and plants. Pathogenicity islands comprise large genomic regions [10-200 kilobases (kb) in size] that are present on the genomes of pathogenic strains but absent from the genomes of nonpathogenic members of the same or related species. The finding that the G+C content of pathogenicity islands often differs from that of the rest of the genome, the presence of direct repeats at their ends, the association of pathogenicity islands with transfer RNA genes, the presence of integrase determinants and other mobility loci, and their genetic instability argue for the generation of pathogenicity islands by horizontal gene transfer, a process that is well known to contribute to microbial evolution. In this article we review these and other aspects of pathogenicity islands and discuss the concept that they represent a subclass of genomic islands. Genomic islands are present in the majority of genomes of pathogenic as well as nonpathogenic bacteria and may encode accessory functions which have been previously spread among bacterial populations.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Ltd
    Molecular microbiology 43 (2002), S. 0 
    ISSN: 1365-2958
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Medicine
    Notes: In pathogenic Vibrio cholerae, the transmembrane DNA-binding protein ToxR co-ordinates the expression of over 20 genes, including those encoding important virulence factors such as cholera toxin and the toxin-co-regulated pilus. The outer membrane protein OmpT is the only member of the ToxR regulon known to be repressed by ToxR. In this study, we examined the environmental conditions that regulate OmpT expression and demonstrated that ompT transcription is upregulated 14-fold when the bacteria enter late log phase from early log phase. Deletion of the crp gene completely abolishes OmpT expression. Comparison of ompT transcription levels in the isogenic crp−, toxR− and crp−toxR− mutants revealed that (i) in the absence of ToxR, constitutive high-level ompT transcription is dependent on cAMP receptor protein (CRP); (ii) ToxR not only interferes with CRP-dependent ompT activation, but also abolishes the CRP-independent, basal level ompT transcription; thus, the mechanism by which ToxR represses ompT transcription involves both antiactivation and direct repression; (iii) both CRP and ToxR are required for the regulation of OmpT expression by growth phase. To provide further insights into the molecular mecha-nism of CRP-dependent activation of ompT transcription, we demonstrated that CRP-dependent activation requires a CRP binding site centred at −310 of the ompT promoter, without which the interaction of CRP with other CRP binding site(s) more proximal to the promoter results in repression. Mutations in two regions on CRP (AR1 and AR2) that directly contact RNA polymerase (RNAP) abolish activation, suggesting direct interaction of CRP with RNAP from −310 of the ompT promoter via DNA looping.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1365-2958
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Medicine
    Notes: Quorum sensing is a cell-to-cell signalling mechanism in which bacteria secrete hormone-like compounds called autoinducers. When these auto-inducers reach a certain threshold concentration, they interact with bacterial transcriptional regulators, thereby regulating gene expression. Enterohaemorrhagic Escherichia coli (EHEC) O157:H7 as well as E. coli K-12 produces the autoinducer-2 (AI-2), which is synthesized by the product of the luxS gene, and previous work from our laboratory has shown that genes encoding the EHEC type III secretion system were activated by quorum sensing. Recently, by hybridizing an E. coli K-12 gene array with cDNA synthesized from RNA extracted from EHEC strain 86-24 and its isogenic luxS mutant, we observed that other potential virulence-associated factors, such as genes encoding the expression and assembly of flagella, motility and chemotaxis, were also activated by quorum sensing. The array data also indicated that several genes encoding putative E. coli regulators were controlled by quorum sensing. In this report, we describe a two-component system regulated by quorum sensing that shares homology with Salmonella typhimurium PmrAB, which we have named quorum sensing E. coli regulator B and C (QseBC). The qseBC genes, previously identified only as open reading frames b3025 and b3026, are organized in an operon in the E. coli chromosome, with qseB encoding the response regulator and qseC the sensor kinase. We confirmed the regulation of qseBC by quorum sensing using qseB::lacZ transcriptional fusions and characterized the phenotypes of an isogenic qseC mutation in EHEC. This mutant expressed less flagellin and had reduced motility compared with the wild-type and complemented strains. Transcription of flhD, fliA, motA and fliC::lacZ fusions was decreased in the qseC mutant, suggesting that qseBC is a transcriptional regulator of flagella genes. A qseC mutant was also generated in E. coli K-12 strain MC1000 that showed the same phenotypes as the EHEC mutant, indicating that qseBC regulates flagella and motility by quorum sensing in both EHEC and K-12. QseBC activates transcription of flhDC, which is the master regulator for the flagella and motility genes and, in the absence of flhD, QseBC failed to activate the transcription of fliA. Motility of a luxS, but not of a qseC, mutant can be restored by providing AI-2 exogenously as preconditioned media, suggesting that the qseC mutant is unable to respond to AI-2. However, QseC has no effect on the expression of other quorum sensing-controlled genes such as those encoding for the type III secretion system. These data indicate that QseBC is one component of the quorum-sensing regulatory cascade in both EHEC and K-12 that is involved in the regulation of flagella and motility genes, but that additional regulators in this cascade remain to be characterized.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Ltd.
    Molecular microbiology 44 (2002), S. 0 
    ISSN: 1365-2958
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Medicine
    Notes: Enteropathogenic Escherichia coli (EPEC) utilizes a type III protein secretion system to target effector molecules into the host cell leading to effacement of the intestinal mucosa. This secretion apparatus shares many structural features of the flagellar type III export system involved in flagella assembly and motility. We report here that fliC insertional mutants constructed in two wild-type EPEC strains were markedly impaired in adherence and microcolony formation on cultured cells. An E. coli K-12 strain harbouring the EPEC H6 fliC gene on a plasmid showed discrete adhering clusters on HeLa cells, albeit to less extent than the wild-type EPEC strain. Flagella purified from EPEC bound to cultured epithelial cells and antiflagella antibodies blocked adherence of several EPEC serotypes. We determined that eukaryotic cells in culture stimulate expression of flagella by motile and non-motile EPEC. Isogenic strains mutated in perA (a transcriptional activator), bfpA (a type IV pilin), luxS (a quorum-sensing autoinducer gene) and in the type III secretion genes were reduced for motility in Dulbecco’s modified Eagle medium (DMEM) motility agar and produced none or few flagella when associated with epithelial cells. Growth of these mutants in preconditioned tissue culture medium restored motility and their ability to produce flagella, suggesting the influence of a signal provided by mammalian cells that triggers flagella production. This study shows for the first time that the flagella of EPEC are directly involved in the adherence of these bacteria and supports the existence of a molecular relationship between the two existing type III secretion pathways of EPEC, the EPEC adherence factor (EAF) plasmid-encoded regulator, quorum sensing and epithelial cells.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1365-2958
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Medicine
    Notes: In many Gram-negative bacteria, a key indicator of pathogenic potential is the possession of a specialized type III secretion system, which is utilized to deliver virulence effector proteins directly into the host cell cytosol. Many of the proteins secreted from such systems require small cytosolic chaperones to maintain the secreted substrates in a secretion-competent state. One such protein, CesT, serves a chaperone function for the enteropathogenic Escherichia coli (EPEC) translocated intimin receptor (Tir) protein, which confers upon EPEC the ability to alter host cell morphology following intimate bacterial attachment. Using a combination of complementary biochemical approaches, functional domains of CesT that mediate intermolecular interactions, involved in both chaperone–chaperone and chaperone–substrate associations, were determined. The CesT N-terminal is implicated in chaperone dimerization, whereas the amphipathic α-helical region of the C-terminal, is intimately involved in substrate binding. By functional complementation of chaperone domains using the Salmonella SicA chaperone to generate chaperone chimeras, we show that CesT–Tir interaction proceeds by a mechanism potentially common to other type III secretion system chaperones.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    ISSN: 1365-2958
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Medicine
    Notes: Enteropathogenic Escherichia coli (EPEC) is a major cause of infantile diarrhoea in a number of developing countries and is the prototype of pathogenic bacteria that cause attaching and effacing (A/E) intestinal lesions. A chromosomal pathogenicity island, termed the locus of enterocyte effacement (LEE), contains all the genes necessary for the A/E phenotype as well as genes for a type III secretion system and intimate adhesion. Genes in the LEE and genes involved in the synthesis of bundle-forming pili (BFP) are positively regulated by the plasmid-encoded regulator (Per) and comprise the per regulon. In order to identify factors that control the per regulon, we screened an EPEC genomic library for clones that modulate the expression of per. A plasmid clone that decreased the expression of per was isolated using a lacZ reporter gene fused to the per promoter. Subcloning revealed that YhiX, a putative AraC/XylR family transcriptional regulator, was the effector of per repression. Through downregulation of per, a plasmid overproducing YhiX reduced the synthesis of intimin, BfpA, Tir, and CesT, factors important for EPEC virulence. yhiX is located downstream of gadA, which encodes glutamate decarboxylase, an enzyme involved in acid resistance of E. coli. YhiX was found to be an activator of gadA, and the cloned yhiX gene increased production of glutamate decarboxylases (GAD) and activated the transcription of the gadA and gadB promoters. Therefore, yhiX was renamed gadX. Analysis of a gadX mutant grown in the different culture media with acidic and alkaline pH showed that regulation of perA, gadA and gadB by GadX was altered by the external pH and the culture media condition. Under conditions in which EPEC infects cultured epithelial cells, GadX negatively regulated perA expression, and the derepression in the gadX mutant increased translocation of Tir into epithelial cells relative to wild-type EPEC. DNA mobility shift experiments showed that purified GadX protein bound to the perA, gadA and gadB promoter regions in vitro, indicating that GadX is a transcriptional regulator of these genes. On the basis of these results, we propose that GadX may be involved in the appropriate expression of genes required for acid resistance and virulence of EPEC. Our data are consistent with a model in which environmental changes resulting from passage from the stomach to the proximal small intestine induce the functional effect of GadX on per and GAD expression in order to prevent inappropriate expression of the products of these two systems.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    ISSN: 1365-2958
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Medicine
    Notes: The locus of enterocyte effacement of enteropathogenic Escherichia coli encodes a type III secretion system, an outer membrane protein adhesin (intimin, the product of eae ) and Tir, a translocated protein that becomes a host cell receptor for intimin. Many type III secreted proteins require chaperones, which function to stabilize proteins, prevent inappropriate protein–protein interactions and aid in secretion. An open reading frame located between tir and eae, previously named orfU, was predicted to encode a protein with partial similarity to the Yersinia SycH chaperone. We examined the potential of the orfU gene product to serve as a chaperone for Tir. The orfU gene encoded a 15 kDa cytoplasmic protein that specifically interacted with Tir as demonstrated by the yeast two-hybrid assay, column binding and coimmunoprecipitation experiments. An orfU mutant was defective in attaching–effacing lesion formation and Tir secretion, but was unaffected in expression of other virulence factors. OrfU appeared to stabilize Tir levels in the cytoplasm, but was not absolutely necessary for secretion of Tir. Based upon the physical similarities, phenotypic characteristics and the demonstrated interaction with Tir, orfU is redesignated as cesT for the chaperone for E. coli secretion of T ir.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    ISSN: 1365-2958
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Medicine
    Notes: Enteropathogenic Escherichia coli (EPEC) is the prototype organism of a group of pathogenic Gram-negative bacteria that cause attaching and effacing (AE) intestinal lesions. All EPEC genes necessary for the AE phenotype are encoded within a 35.6 kb pathogenicity island termed the locus of enterocyte effacement (LEE). The LEE encodes 41 predicted open reading frames (ORFs), including components of a type III secretion apparatus and secreted molecules involved in the disruption of the host cell cytoskeleton. To initiate our studies on regulation of genes within the LEE, we determined the genetic organization of the LEE, defining transcriptional units and mapping transcriptional start points. We found that components of the type III secretion system are transcribed from three polycistronic operons designated LEE1, LEE2 and LEE3. The secreted Esp molecules are part of a fourth polycistronic operon designated LEE4. Using reporter gene fusion assays, we found that the previously described plasmid-encoded regulator (Per) activated operons LEE1, LEE2 and LEE3, and modestly increased the expression of LEE4 in EPEC. Using single-copy lacZ fusions in K-12-derived strains, we determined that Per only directly activated the LEE1::lacZ fusion, and did not directly activate the other operons. Orf1 of the LEE1 operon activated the expression of single-copy LEE2::lacZ and LEE3::lacZ fusions in trans and modestly increased the expression of LEE4::lacZ in K-12 strains. Orf1 was therefore designated Ler, for LEE-encoded regulator. Thus, the four polycistronic operons of the LEE that encode type III secretion components and secreted molecules are now included in the Per regulon, where Ler participates in this novel regulatory cascade in EPEC.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    ISSN: 1365-2958
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Medicine
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...