ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2000-02-26
    Description: The molecular control of self-renewal and differentiation of stem cells has remained enigmatic. Transgenic loss-of-function and overexpression models now show that the dosage of glial cell line-derived neurotrophic factor (GDNF), produced by Sertoli cells, regulates cell fate decisions of undifferentiated spermatogonial cells that include the stem cells for spermatogenesis. Gene-targeted mice with one GDNF-null allele show depletion of stem cell reserves, whereas mice overexpressing GDNF show accumulation of undifferentiated spermatogonia. They are unable to respond properly to differentiation signals and undergo apoptosis upon retinoic acid treatment. Nonmetastatic testicular tumors are regularly formed in older GDNF-overexpressing mice. Thus, GDNF contributes to paracrine regulation of spermatogonial self-renewal and differentiation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Meng, X -- Lindahl, M -- Hyvonen, M E -- Parvinen, M -- de Rooij, D G -- Hess, M W -- Raatikainen-Ahokas, A -- Sainio, K -- Rauvala, H -- Lakso, M -- Pichel, J G -- Westphal, H -- Saarma, M -- Sariola, H -- New York, N.Y. -- Science. 2000 Feb 25;287(5457):1489-93.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Research Programs of Developmental Biology, Molecular Neurobiology, Electron Microscopy Unit, Institute of Biotechnology, Viikki Biocenter, Finland.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10688798" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Apoptosis/drug effects ; Cell Cycle ; Cell Differentiation/drug effects ; Cobalt/metabolism ; *Drosophila Proteins ; Female ; Gene Expression ; Gene Targeting ; Glial Cell Line-Derived Neurotrophic Factor ; Glial Cell Line-Derived Neurotrophic Factor Receptors ; Male ; Mice ; Mice, Transgenic ; Mitosis ; *Nerve Growth Factors ; Nerve Tissue Proteins/genetics/*physiology ; Proto-Oncogene Proteins/genetics/metabolism ; Proto-Oncogene Proteins c-ret ; Receptor Protein-Tyrosine Kinases/genetics/metabolism ; Sertoli Cells/cytology/physiology ; *Spermatogenesis ; Spermatogonia/*cytology/drug effects ; Stem Cells/*cytology ; Testicular Neoplasms/pathology ; Testis/anatomy & histology ; Vitamin A/pharmacology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2009-10-16
    Description: The development of multicellular organisms requires integrin-mediated interactions between cells and their extracellular environment. Integrin binding to extracellular matrix catalyses assembly of multiprotein complexes, which transduce mechanical and chemical signals that regulate many aspects of cell physiology. Integrin-linked kinase (Ilk) is a multifunctional protein that binds beta-integrin cytoplasmic domains and regulates actin dynamics by recruiting actin binding regulatory proteins such as alpha- and beta-parvin. Ilk has also been shown to possess serine/threonine kinase activity and to phosphorylate signalling proteins such as Akt1 and glycogen synthase kinase 3beta (Gsk3beta) in mammalian cells; however, these functions have been shown by genetic studies not to occur in flies and worms. Here we show that mice carrying point mutations in the proposed autophosphorylation site of the putative kinase domain and in the pleckstrin homology domain are normal. In contrast, mice with point mutations in the conserved lysine residue of the potential ATP-binding site of the kinase domain, which mediates Ilk binding to alpha-parvin, die owing to renal agenesis. Similar renal defects occur in alpha-parvin-null mice. Thus, we provide genetic evidence that the kinase activity of Ilk is dispensable for mammalian development; however, an interaction between Ilk and alpha-parvin is critical for kidney development.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lange, Anika -- Wickstrom, Sara A -- Jakobson, Madis -- Zent, Roy -- Sainio, Kirsi -- Fassler, Reinhard -- DK065123/DK/NIDDK NIH HHS/ -- DK075594/DK/NIDDK NIH HHS/ -- DK65123/DK/NIDDK NIH HHS/ -- P01 DK065123/DK/NIDDK NIH HHS/ -- England -- Nature. 2009 Oct 15;461(7266):1002-6. doi: 10.1038/nature08468.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Medicine, Max Planck Institute of Biochemistry, Martinsried 82152, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19829382" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Blood Proteins/chemistry ; Cell Movement ; *Genes, Essential ; Kidney/abnormalities/*embryology/*metabolism ; Lysine/genetics/metabolism ; Mice ; Microfilament Proteins/metabolism ; Perinatal Mortality ; Phosphoproteins/chemistry ; Phosphorylation/genetics ; Protein Binding/genetics ; Protein Structure, Tertiary/genetics ; Protein-Serine-Threonine Kinases/chemistry/genetics/*metabolism ; Serine/genetics/metabolism ; Survival Analysis
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 1991-10-25
    Description: Nerve growth factor receptor (NGFR) serves as the binding site for the neurotrophic growth factors. Although NGFR has been found in several embryonic tissues outside the nervous system, the function of NGFR in embryogenesis of non-neuronal organs remains unknown. NGFR is transiently synthesized by embryonic rat kidney and disappears from nephrons upon their terminal differentiation. Anti-sense oligonucleotide inhibition of NGFR expression inhibits kidney morphogenesis. Therefore, NGFR is required not only for development of the nervous system, but also for differentiation of the kidney tubules.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sariola, H -- Saarma, M -- Sainio, K -- Arumae, U -- Palgi, J -- Vaahtokari, A -- Thesleff, I -- Karavanov, A -- New York, N.Y. -- Science. 1991 Oct 25;254(5031):571-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Paediatric Pathology, Childrens' Hospital, University of Helsinki, Finland.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1658930" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Base Sequence ; Embryo, Mammalian ; Gene Expression ; Kidney/cytology/*embryology ; Molecular Sequence Data ; Nerve Growth Factors/*physiology ; Oligonucleotides, Antisense ; PC12 Cells ; RNA, Messenger/analysis/genetics ; Rats ; Receptors, Cell Surface/*genetics/physiology ; Receptors, Nerve Growth Factor
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2008-09-13
    Description: Mexican and Peruvian hairless dogs and Chinese crested dogs are characterized by missing hair and teeth, a phenotype termed canine ectodermal dysplasia (CED). CED is inherited as a monogenic autosomal semidominant trait. With genomewide association analysis we mapped the CED mutation to a 102-kilo-base pair interval on chromosome 17. The associated interval contains a previously uncharacterized member of the forkhead box transcription factor family (FOXI3), which is specifically expressed in developing hair and teeth. Mutation analysis revealed a frameshift mutation within the FOXI3 coding sequence in hairless dogs. Thus, we have identified FOXI3 as a regulator of ectodermal development.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Drogemuller, Cord -- Karlsson, Elinor K -- Hytonen, Marjo K -- Perloski, Michele -- Dolf, Gaudenz -- Sainio, Kirsi -- Lohi, Hannes -- Lindblad-Toh, Kerstin -- Leeb, Tosso -- New York, N.Y. -- Science. 2008 Sep 12;321(5895):1462. doi: 10.1126/science.1162525.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉University of Berne, 3001 Berne, Switzerland.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18787161" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Chromosome Mapping ; Dog Diseases/*genetics ; Dogs/*genetics ; Ectoderm/*embryology/metabolism ; Ectodermal Dysplasia/genetics/*veterinary ; Ectodysplasins/metabolism ; Female ; Forkhead Transcription Factors/chemistry/*genetics/physiology ; *Frameshift Mutation ; Gene Duplication ; Hair/embryology/metabolism ; Haplotypes ; Male ; Mice ; Molecular Sequence Data ; Mutant Proteins/chemistry/genetics/physiology ; Pedigree ; Polymorphism, Single Nucleotide ; Sequence Analysis, DNA ; Signal Transduction ; Tooth/embryology/metabolism ; Vibrissae/embryology/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Amsterdam : Elsevier
    Cell Differentiation and Development 27 (1989), S. 79 
    ISSN: 0922-3371
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Biology
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 0945-053X
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Biology , Medicine
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Springer
    Cellular and molecular neurobiology 14 (1994), S. 439-457 
    ISSN: 1573-6830
    Keywords: deoxyoligonucleotide inhibition ; kidney morphogenesis ; nerve growth factor receptor
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary 1. Antisense inhibition of gene expression implies that the expression of the target protein is selectively inhibited at either the translational or the transcriptional level by complementary DNA or RNA constructs that are antiparallel to the target sequence. The antisense inhibition strategy provides means to study the roles of individual proteins and has, in spite of its limitations, gained a wide range of both therapeutic and experimental applications. 2. In developmental biology, protein expression has been selectively inhibited by the use of antisense gene transfection and by antisense deoxyoligonucleotides. The transfectability of embryonic tissues is variable, but in general fetal and embryonic cells take up foreign DNA relatively efficiently, in particular, short deoxyoligonucleotides that penetrate mesenchymal cells within a few hours without any manipulation. 3. We have now evaluated the advantages and pitfalls of antisense inhibition by deoxyoligonucleotides in organ culture and describe our experience from the inhibition of low-affinity nerve growth factor receptor expression in embryonic mouse and rat kidneys. 4. The expression of nerve growth factor receptor can be specifically inhibited by deoxyoligonucleotides, but the target sequence-dependent window of, in particular, phosphorothioate-modified oligonucleotides is quite narrow. The culture conditions affect the response to the oligonucleotides and their cellular incorporation is variable with respect to the cell type and stage of differentiation.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
  • 9
    Publication Date: 1994-10-01
    Print ISSN: 0272-4340
    Electronic ISSN: 1573-6830
    Topics: Biology
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...