ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2013-11-12
    Description: Jasmonates are ubiquitous oxylipin-derived phytohormones that are essential in the regulation of many development, growth and defence processes. Across the plant kingdom, jasmonates act as elicitors of the production of bioactive secondary metabolites that serve in defence against attackers. Knowledge of the conserved jasmonate perception and early signalling machineries is increasing, but the downstream mechanisms that regulate defence metabolism remain largely unknown. Here we show that, in the legume Medicago truncatula, jasmonate recruits the endoplasmic-reticulum-associated degradation (ERAD) quality control system to manage the production of triterpene saponins, widespread bioactive compounds that share a biogenic origin with sterols. An ERAD-type RING membrane-anchor E3 ubiquitin ligase is co-expressed with saponin synthesis enzymes to control the activity of 3-hydroxy-3-methylglutaryl-CoA reductase (HMGR), the rate-limiting enzyme in the supply of the ubiquitous terpene precursor isopentenyl diphosphate. Thus, unrestrained bioactive saponin accumulation is prevented and plant development and integrity secured. This control apparatus is equivalent to the ERAD system that regulates sterol synthesis in yeasts and mammals but that uses distinct E3 ubiquitin ligases, of the HMGR degradation 1 (HRD1) type, to direct destruction of HMGR. Hence, the general principles for the management of sterol and triterpene saponin biosynthesis are conserved across eukaryotes but can be controlled by divergent regulatory cues.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Pollier, Jacob -- Moses, Tessa -- Gonzalez-Guzman, Miguel -- De Geyter, Nathan -- Lippens, Saskia -- Vanden Bossche, Robin -- Marhavy, Peter -- Kremer, Anna -- Morreel, Kris -- Guerin, Christopher J -- Tava, Aldo -- Oleszek, Wieslaw -- Thevelein, Johan M -- Campos, Narciso -- Goormachtig, Sofie -- Goossens, Alain -- England -- Nature. 2013 Dec 5;504(7478):148-52. doi: 10.1038/nature12685. Epub 2013 Nov 10.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Department of Plant Systems Biology, VIB, Technologiepark 927, Gent B-9052, Belgium [2] Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, Gent B-9052, Belgium [3].〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24213631" target="_blank"〉PubMed〈/a〉
    Keywords: Cells, Cultured ; Endoplasmic Reticulum-Associated Degradation ; Gene Expression Profiling ; *Gene Expression Regulation, Plant ; Gene Silencing ; Genetic Complementation Test ; Medicago truncatula/enzymology/*genetics/*metabolism/ultrastructure ; Microscopy, Electron, Scanning ; Molecular Sequence Data ; Mutation ; Plant Growth Regulators/metabolism ; Plant Roots/genetics/metabolism/ultrastructure ; Saccharomyces cerevisiae/genetics/metabolism ; Saponins/biosynthesis/genetics ; Signal Transduction ; Ubiquitin-Protein Ligases/genetics/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2013-08-21
    Description: Lignin is a major component of plant secondary cell walls. Here we describe caffeoyl shikimate esterase (CSE) as an enzyme central to the lignin biosynthetic pathway. Arabidopsis thaliana cse mutants deposit less lignin than do wild-type plants, and the remaining lignin is enriched in p-hydroxyphenyl units. Phenolic metabolite profiling identified accumulation of the lignin pathway intermediate caffeoyl shikimate in cse mutants as compared to caffeoyl shikimate levels in the wild type, suggesting caffeoyl shikimate as a substrate for CSE. Accordingly, recombinant CSE hydrolyzed caffeoyl shikimate into caffeate. Associated with the changes in lignin, the conversion of cellulose to glucose in cse mutants increased up to fourfold as compared to that in the wild type upon saccharification without pretreatment. Collectively, these data necessitate the revision of currently accepted models of the lignin biosynthetic pathway.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Vanholme, Ruben -- Cesarino, Igor -- Rataj, Katarzyna -- Xiao, Yuguo -- Sundin, Lisa -- Goeminne, Geert -- Kim, Hoon -- Cross, Joanna -- Morreel, Kris -- Araujo, Pedro -- Welsh, Lydia -- Haustraete, Jurgen -- McClellan, Christopher -- Vanholme, Bartel -- Ralph, John -- Simpson, Gordon G -- Halpin, Claire -- Boerjan, Wout -- BB/G016232/1/Biotechnology and Biological Sciences Research Council/United Kingdom -- New York, N.Y. -- Science. 2013 Sep 6;341(6150):1103-6. doi: 10.1126/science.1241602. Epub 2013 Aug 15.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Plant Systems Biology, VIB (Flanders Institute for Biotechnology), Technologiepark 927, B-9052 Ghent, Belgium.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23950498" target="_blank"〉PubMed〈/a〉
    Keywords: Arabidopsis/*enzymology/genetics ; Arabidopsis Proteins/*chemistry/genetics ; Carboxylic Ester Hydrolases/*chemistry/genetics ; Glucose/chemistry ; Lignin/*biosynthesis ; Metabolic Networks and Pathways ; Mutation ; Shikimic Acid/chemistry ; Substrate Specificity
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...