ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2014-11-11
    Description: Inactivation of APC is a strongly predisposing event in the development of colorectal cancer, prompting the search for vulnerabilities specific to cells that have lost APC function. Signalling through the mTOR pathway is known to be required for epithelial cell proliferation and tumour growth, and the current paradigm suggests that a critical function of mTOR activity is to upregulate translational initiation through phosphorylation of 4EBP1 (refs 6, 7). This model predicts that the mTOR inhibitor rapamycin, which does not efficiently inhibit 4EBP1 (ref. 8), would be ineffective in limiting cancer progression in APC-deficient lesions. Here we show in mice that mTOR complex 1 (mTORC1) activity is absolutely required for the proliferation of Apc-deficient (but not wild-type) enterocytes, revealing an unexpected opportunity for therapeutic intervention. Although APC-deficient cells show the expected increases in protein synthesis, our study reveals that it is translation elongation, and not initiation, which is the rate-limiting component. Mechanistically, mTORC1-mediated inhibition of eEF2 kinase is required for the proliferation of APC-deficient cells. Importantly, treatment of established APC-deficient adenomas with rapamycin (which can target eEF2 through the mTORC1-S6K-eEF2K axis) causes tumour cells to undergo growth arrest and differentiation. Taken together, our data suggest that inhibition of translation elongation using existing, clinically approved drugs, such as the rapalogs, would provide clear therapeutic benefit for patients at high risk of developing colorectal cancer.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4304784/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4304784/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Faller, William J -- Jackson, Thomas J -- Knight, John R P -- Ridgway, Rachel A -- Jamieson, Thomas -- Karim, Saadia A -- Jones, Carolyn -- Radulescu, Sorina -- Huels, David J -- Myant, Kevin B -- Dudek, Kate M -- Casey, Helen A -- Scopelliti, Alessandro -- Cordero, Julia B -- Vidal, Marcos -- Pende, Mario -- Ryazanov, Alexey G -- Sonenberg, Nahum -- Meyuhas, Oded -- Hall, Michael N -- Bushell, Martin -- Willis, Anne E -- Sansom, Owen J -- 311301/European Research Council/International -- A7130/Cancer Research UK/United Kingdom -- G1000078/1/National Centre for the Replacement, Refinement and Reduction of Animals in Research/United Kingdom -- MC_UP_A600_1023/Medical Research Council/United Kingdom -- Cancer Research UK/United Kingdom -- England -- Nature. 2015 Jan 22;517(7535):497-500. doi: 10.1038/nature13896. Epub 2014 Nov 5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Cancer Research UK Beatson Institute, Glasgow G61 1BD, UK. ; Medical Research Council Toxicology Unit, Leicester LE1 9HN, UK. ; Institut Necker-Enfants Malades, CS 61431, Paris, France Institut National de la Sante et de la Recherche Medicale, U1151, F-75014 Paris, France Universite Paris Descartes, Sorbonne Paris Cite, 75006 Paris, France. ; Department of Pharmacology, Rutgers The State University of New Jersey, Robert Wood Johnson Medical School, Piscataway, New Jersey 08854, USA. ; Department of Biochemistry and Goodman Cancer Research Center, McGill University, Montreal, Quebec H3A 1A3, Canada. ; Department of Biochemistry and Molecular Biology, IMRIC, The Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel. ; Biozentrum, University of Basel, CH-4056 Basel, Switzerland.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25383520" target="_blank"〉PubMed〈/a〉
    Keywords: Adenomatous Polyposis Coli Protein/deficiency/genetics ; Animals ; Cell Proliferation ; Cell Transformation, Neoplastic/metabolism/*pathology ; Elongation Factor 2 Kinase/deficiency/genetics/metabolism ; Enzyme Activation ; Genes, APC ; Intestinal Neoplasms/genetics/*metabolism/*pathology ; Male ; Mice ; Mice, Inbred C57BL ; Multiprotein Complexes/*metabolism ; Oncogene Protein p55(v-myc)/metabolism ; *Peptide Chain Elongation, Translational ; Peptide Elongation Factor 2/metabolism ; Ribosomal Protein S6 Kinases/metabolism ; Signal Transduction ; TOR Serine-Threonine Kinases/*metabolism ; Wnt Proteins/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-07-06
    Description: Linkage maps are widely used to investigate structure, function, and evolution of genomes. In speciation research, maps facilitate the study of the genetic architecture of reproductive isolation by allowing identification of genomic regions underlying reduced fitness of hybrids. Here we present a linkage map for European newts of the Lissotriton vulgaris species complex, constructed using two families of F2 L. montandoni x L. vulgaris hybrids. The map consists of 1146 protein-coding genes on 12 linkage groups, equal to the haploid chromosome number, with a total length of 1484 cM (1.29 cM per marker). It is notably shorter than two other maps available for salamanders, but the differences in map length are consistent with cytogenetic estimates of the number of chiasmata per chromosomal arm. Thus, large salamander genomes do not necessarily translate into long linkage maps, as previously suggested. Consequently, salamanders are an excellent model to study evolutionary consequences of recombination rate variation in taxa with large genomes and a similar number of chromosomes. A complex pattern of transmission ratio distortion (TRD) was detected: TRD occurred mostly in one family, in one breeding season, and was clustered in two genomic segments. This is consistent with environment-dependent mortality of individuals carrying L. montandoni alleles in these two segments and suggests a role of TRD blocks in reproductive isolation. The reported linkage map will empower studies on the genomic architecture of divergence and interactions between the genomes of hybridizing newts.
    Electronic ISSN: 2160-1836
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...