ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2007-11-17
    Description: The circadian clock temporally coordinates metabolic homeostasis in mammals. Central to this is heme, an iron-containing porphyrin that serves as prosthetic group for enzymes involved in oxidative metabolism as well as transcription factors that regulate circadian rhythmicity. The circadian factor that integrates this dual function of heme is not known. We show that heme binds reversibly to the orphan nuclear receptor Rev-erbalpha, a critical negative component of the circadian core clock, and regulates its interaction with a nuclear receptor corepressor complex. Furthermore, heme suppresses hepatic gluconeogenic gene expression and glucose output through Rev-erbalpha-mediated gene repression. Thus, Rev-erbalpha serves as a heme sensor that coordinates the cellular clock, glucose homeostasis, and energy metabolism.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Yin, Lei -- Wu, Nan -- Curtin, Joshua C -- Qatanani, Mohammed -- Szwergold, Nava R -- Reid, Robert A -- Waitt, Gregory M -- Parks, Derek J -- Pearce, Kenneth H -- Wisely, G Bruce -- Lazar, Mitchell A -- R01 DK45586/DK/NIDDK NIH HHS/ -- New York, N.Y. -- Science. 2007 Dec 14;318(5857):1786-9. Epub 2007 Nov 15.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18006707" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Biological Clocks ; Cell Line ; Cell Line, Tumor ; *Circadian Rhythm/genetics ; DNA-Binding Proteins/*metabolism ; Energy Metabolism ; *Gene Expression Regulation ; Gluconeogenesis/genetics ; Glucose/*metabolism ; Glucose-6-Phosphatase/genetics/metabolism ; Heme/*metabolism ; Hemin/pharmacology ; Histone Deacetylases/metabolism ; Homeostasis ; Humans ; Male ; *Metabolic Networks and Pathways ; Mice ; Nuclear Proteins/metabolism ; Nuclear Receptor Co-Repressor 1 ; Nuclear Receptor Subfamily 1, Group D, Member 1 ; Receptors, Cytoplasmic and Nuclear/*metabolism ; Repressor Proteins/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019
    Description: 〈p〉Stabilization of the MYC oncoprotein by KRAS signaling critically promotes the growth of pancreatic ductal adenocarcinoma (PDAC). Thus, understanding how MYC protein stability is regulated may lead to effective therapies. Here, we used a previously developed, flow cytometry–based assay that screened a library of 〉800 protein kinase inhibitors and identified compounds that promoted either the stability or degradation of MYC in a KRAS-mutant PDAC cell line. We validated compounds that stabilized or destabilized MYC and then focused on one compound, UNC10112785, that induced the substantial loss of MYC protein in both two-dimensional (2D) and 3D cell cultures. We determined that this compound is a potent CDK9 inhibitor with a previously uncharacterized scaffold, caused MYC loss through both transcriptional and posttranslational mechanisms, and suppresses PDAC anchorage-dependent and anchorage-independent growth. We discovered that CDK9 enhanced MYC protein stability through a previously unknown, KRAS-independent mechanism involving direct phosphorylation of MYC at Ser〈sup〉62〈/sup〉. Our study thus not only identifies a potential therapeutic target for patients with KRAS-mutant PDAC but also presents the application of a screening strategy that can be more broadly adapted to identify regulators of protein stability.〈/p〉
    Print ISSN: 1945-0877
    Electronic ISSN: 1937-9145
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...