ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2010-06-26
    Description: Tumour-necrosis factor (TNF) receptor-associated factor 2 (TRAF2) is a key component in NF-kappaB signalling triggered by TNF-alpha. Genetic evidence indicates that TRAF2 is necessary for the polyubiquitination of receptor interacting protein 1 (RIP1) that then serves as a platform for recruitment and stimulation of IkappaB kinase, leading to activation of the transcription factor NF-kappaB. Although TRAF2 is a RING domain ubiquitin ligase, direct evidence that TRAF2 catalyses the ubiquitination of RIP1 is lacking. TRAF2 binds to sphingosine kinase 1 (SphK1), one of the isoenzymes that generates the pro-survival lipid mediator sphingosine-1-phosphate (S1P) inside cells. Here we show that SphK1 and the production of S1P is necessary for lysine-63-linked polyubiquitination of RIP1, phosphorylation of IkappaB kinase and IkappaBalpha, and IkappaBalpha degradation, leading to NF-kappaB activation. These responses were mediated by intracellular S1P independently of its cell surface G-protein-coupled receptors. S1P specifically binds to TRAF2 at the amino-terminal RING domain and stimulates its E3 ligase activity. S1P, but not dihydro-S1P, markedly increased recombinant TRAF2-catalysed lysine-63-linked, but not lysine-48-linked, polyubiquitination of RIP1 in vitro in the presence of the ubiquitin conjugating enzymes (E2) UbcH13 or UbcH5a. Our data show that TRAF2 is a novel intracellular target of S1P, and that S1P is the missing cofactor for TRAF2 E3 ubiquitin ligase activity, indicating a new paradigm for the regulation of lysine-63-linked polyubiquitination. These results also highlight the key role of SphK1 and its product S1P in TNF-alpha signalling and the canonical NF-kappaB activation pathway important in inflammatory, antiapoptotic and immune processes.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2946785/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2946785/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Alvarez, Sergio E -- Harikumar, Kuzhuvelil B -- Hait, Nitai C -- Allegood, Jeremy -- Strub, Graham M -- Kim, Eugene Y -- Maceyka, Michael -- Jiang, Hualiang -- Luo, Cheng -- Kordula, Tomasz -- Milstien, Sheldon -- Spiegel, Sarah -- R01 AI050094/AI/NIAID NIH HHS/ -- R01 AI050094-09/AI/NIAID NIH HHS/ -- R01 CA061774/CA/NCI NIH HHS/ -- R01 CA061774-15/CA/NCI NIH HHS/ -- R01 CA061774-16/CA/NCI NIH HHS/ -- R01AI50094/AI/NIAID NIH HHS/ -- R01CA61774/CA/NCI NIH HHS/ -- R37 GM043880/GM/NIGMS NIH HHS/ -- R37 GM043880-18/GM/NIGMS NIH HHS/ -- R37 GM043880-19/GM/NIGMS NIH HHS/ -- R37 GM043880-20/GM/NIGMS NIH HHS/ -- R37 GM043880-21/GM/NIGMS NIH HHS/ -- R37GM043880/GM/NIGMS NIH HHS/ -- U19 AI077435/AI/NIAID NIH HHS/ -- U19 AI077435-020004/AI/NIAID NIH HHS/ -- U19 AI077435-02S10004/AI/NIAID NIH HHS/ -- U19 AI077435-030004/AI/NIAID NIH HHS/ -- U19AI077435/AI/NIAID NIH HHS/ -- England -- Nature. 2010 Jun 24;465(7301):1084-8. doi: 10.1038/nature09128.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry and Molecular Biology and the Massey Cancer Center, Virginia Commonwealth University School of Medicine, 1101 E. Marshall Street, Richmond, Virginia 23298, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20577214" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Biocatalysis ; Cell Line ; Enzyme Activation ; Humans ; I-kappa B Kinase/metabolism ; I-kappa B Proteins/metabolism ; Lysine/metabolism ; Lysophospholipids/biosynthesis/chemistry/*metabolism ; Mice ; Models, Molecular ; NF-kappa B/metabolism ; Phosphorylation ; Phosphotransferases (Alcohol Group Acceptor)/genetics/metabolism ; Protein Binding ; Protein Structure, Tertiary ; Receptor-Interacting Protein Serine-Threonine Kinases/metabolism ; Sphingosine/*analogs & derivatives/biosynthesis/chemistry/metabolism ; Substrate Specificity ; TNF Receptor-Associated Factor 2/chemistry/*metabolism ; Tumor Necrosis Factor-alpha/pharmacology ; Ubiquitin-Conjugating Enzymes/metabolism ; Ubiquitin-Protein Ligases/*metabolism ; Ubiquitination/drug effects
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2009-09-05
    Description: The pleiotropic lipid mediator sphingosine-1-phosphate (S1P) can act intracellularly independently of its cell surface receptors through unknown mechanisms. Sphingosine kinase 2 (SphK2), one of the isoenzymes that generates S1P, was associated with histone H3 and produced S1P that regulated histone acetylation. S1P specifically bound to the histone deacetylases HDAC1 and HDAC2 and inhibited their enzymatic activity, preventing the removal of acetyl groups from lysine residues within histone tails. SphK2 associated with HDAC1 and HDAC2 in repressor complexes and was selectively enriched at the promoters of the genes encoding the cyclin-dependent kinase inhibitor p21 or the transcriptional regulator c-fos, where it enhanced local histone H3 acetylation and transcription. Thus, HDACs are direct intracellular targets of S1P and link nuclear S1P to epigenetic regulation of gene expression.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2850596/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2850596/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hait, Nitai C -- Allegood, Jeremy -- Maceyka, Michael -- Strub, Graham M -- Harikumar, Kuzhuvelil B -- Singh, Sandeep K -- Luo, Cheng -- Marmorstein, Ronen -- Kordula, Tomasz -- Milstien, Sheldon -- Spiegel, Sarah -- F30NS058008/NS/NINDS NIH HHS/ -- R01 CA061774/CA/NCI NIH HHS/ -- R01 CA061774-14/CA/NCI NIH HHS/ -- R01 CA061774-15/CA/NCI NIH HHS/ -- R01 CA061774-16/CA/NCI NIH HHS/ -- R01CA61774/CA/NCI NIH HHS/ -- R37 GM043880/GM/NIGMS NIH HHS/ -- R37 GM043880-18/GM/NIGMS NIH HHS/ -- R37 GM043880-19/GM/NIGMS NIH HHS/ -- R37 GM043880-20/GM/NIGMS NIH HHS/ -- R37GM043880/GM/NIGMS NIH HHS/ -- Intramural NIH HHS/ -- New York, N.Y. -- Science. 2009 Sep 4;325(5945):1254-7. doi: 10.1126/science.1176709.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry and Molecular Biology and the Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19729656" target="_blank"〉PubMed〈/a〉
    Keywords: Acetylation ; Catalytic Domain ; Cell Line, Tumor ; Cell Nucleus/*metabolism ; Cyclin-Dependent Kinase Inhibitor p21/genetics/metabolism ; Epigenesis, Genetic ; Genes, fos ; Histone Deacetylase 1 ; Histone Deacetylase 2 ; Histone Deacetylase Inhibitors ; Histone Deacetylases/metabolism ; Histones/*metabolism ; Humans ; Lysine/metabolism ; Lysophospholipids/*metabolism ; Nucleosomes/metabolism ; Phosphotransferases (Alcohol Group Acceptor)/genetics/metabolism ; Promoter Regions, Genetic ; RNA Interference ; Repressor Proteins/antagonists & inhibitors/metabolism ; Sphingosine/*analogs & derivatives/metabolism ; Tetradecanoylphorbol Acetate/pharmacology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...