ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-07-13
    Description: NASA possesses a large quantity of flammability data performed in ISS airlock (30% Oxygen 526mmHg) and ISS cabin (24.1% Oxygen 760 mmHg) conditions. As new programs develop, other oxygen and pressure conditions emerge. In an effort to apply existing data, the question arises: Do equivalent oxygen partial pressures perform similarly with respect to flammability? This paper evaluates how material flammability performance is impacted from both the Maximum Oxygen Concentration (MOC) and Maximum Total Pressures (MTP) perspectives. From these studies, oxygen partial pressures can be compared for both the MOC and MTP methods to determine the role of partial pressure in material flammability. This evaluation also assesses the influence of other variables on flammability performance. The findings presented in this paper suggest flammability is more dependent on oxygen concentration than equivalent partial pressure.
    Keywords: Spacecraft Design, Testing and Performance
    Type: JSC-CN-34845 , International Symposium on Flammability and Sensitivity of Materials in Oxygen-Enriched Atmospheres; Apr 13, 2016 - Apr 15, 2016; San Antonio, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-13
    Description: NASA-STD-(I)-6001B Test 1 is currently used to evaluate the flammability of materials intended for use in habitable environments of U.S. spacecraft. The method is a pass/fail upward flame propagation test conducted in the worst case configuration, which is defined as a combination of a material s thickness, test pressure, oxygen concentration, and temperature that make the material most flammable. Although simple parametric effects may be intuitive (such as increasing oxygen concentrations resulting in increased flammability), combinations of multi-parameter effects could be more complex. In addition, there are a variety of material configurations used in spacecraft. Such configurations could include, for example, exposed free edges where fire propagation may be different when compared to configurations commonly employed in standard testing. Studies involving combined oxygen concentration, pressure, and temperature on flammability limits have been conducted and are summarized in this paper. Additional effects on flammability limits of a material s thickness, mode of ignition, burn-length criteria, and exposed edges are presented. The information obtained will allow proper selection of ground flammability test conditions, support further studies comparing flammability in 1-g with microgravity and reduced gravity environments, and contribute to persuasive scientific cases for rigorous space system fire risk assessments.
    Keywords: Nonmetallic Materials
    Type: JSC-CN-23164 , 41st International Conference on Environmental Systems; Jul 17, 2011 - Jul 21, 2011; Portland, OR; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-13
    Description: As part of the qualification of the International Space Station (ISS) fine water mist portable fire extinguisher (PFE), several test methods were developed to determine firefighting capability against stored-energy sources. The most challenging of these devised stored-energy fire test methods proved to be the Lithium-ion (Li-ion) battery fire test scenario. The Orion crew capsule will utilize a different PFE technology from ISS (water spray rather than water mist), which spurred the need for the same type of evaluation focused on the sources of stored energy slated for use on Orion. Laptops were identified as a realistic source for stored-energy fires, requiring a modified Li-ion battery fire test scenario. In addition to open test cell (ambient oxygen concentration) testing to evaluate new proposed PFE performance, sealed chamber (20.9% and elevated oxygen concentration) testing was also performed. Chamber testing included combustion product sampling at various fire progression points for analysis and application to Orion emergency equipment design and response planning. The PFE stored-energy fire test methodology was modified and testing performed. Initial tests indicated ignition of the laptop magnesium laptop cases was possible. Additional tests were performed to characterize the laptop magnesium case fire behavior in various configurations. The new water spray PFE technology proved effective in extinguishing laptop stored-energy fires, and much was learned in the way these types of fires progressed. Findings indicate potential laptop magnesium case ignition mitigation strategies need to be further investigated.
    Keywords: Chemistry and Materials (General)
    Type: ICES-2018-260 , JSC-E-DAA-TN58033 , International Conference on Environmental Systems; Jul 08, 2018 - Jul 12, 2018; Albuquerque, NM; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-13
    Description: The Z-2 is a candidate for NASA's next generation spacesuit, designed for a range of possible missions with enhanced mobility for spacewalks both on planetary surfaces and in microgravity. Increased mobility was accomplished through innovations in shoulder and hip joints, using a number of new bearings to allow spacesuit wearers to dip, walk, and bend with ease; all important tasks for a planetary explorer collecting samples or traveling over rough terrain. The Advanced Spacesuit Development Team of NASA Johnson Space Center requested that the NASA White Sands Test Facility (WSTF) perform a series failure simulation tests on three titanium bearing assemblies, an elemental part of the joint construction used in new spacesuit designs. This testing simulated two undetected failures within the bearings and as a result the objective of this test program was to evaluate whether a failed or failing bearing could result in ignition of the titanium race material due to friction. The first failure was an inner seal leak sufficient to pressurize the race with +99 percent oxygen. The second failure was an improperly installed or mismatched ball port that created a protrusion in the ball bearing race, partially obstructing the nominal rolling path of each ball bearing. When the spacesuit bearings are assembled, bearing balls are loaded into the assembly via a ball port. The ball port is specific and unique to each bearing assembly (matched pair). The simulated mismatched ball port is a significant source of friction, which would be caused by an assembly error. To evaluate this risk, the bearings were cycled in a simulated worst-case scenario environment, with operational loads, and potential flaw conditions. During test the amount of actuation torque required and heat generated through continuous operation were measured and the bearings were observed for sparks or burning events. This paper provides detailed descriptions of the test hardware, methodology, and results.
    Keywords: Mechanical Engineering; Metals and Metallic Materials; Man/System Technology and Life Support
    Type: ICES-2016-298 , JSC-CN-36631 , International Conference on Environmental Systems; Jul 10, 2016 - Jul 14, 2016; Vienna; Austria
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-18
    Description: An accidental fire involving the Lithium-Ion (Li-ion) battery in a laptop computer is one of the most likely fire scenarios on-board a spacecraft. These fires can occur from a defect in the battery that worsens with time, over-charging the battery and leading to failure or accidental damage caused by thermal runaway. While this is a relatively likely fire scenario, very little is known about the how a laptop computer fire would impact a sealed spacecraft. The heat release would likely cause a pressure rise, possibly exceeding the pressure limit of the vehicle and causing a relief valve to open. The combustion products from the fire could pose a short-term and long-term health hazard to the crew and the fire itself could cause injury to the crew and damage to the spacecraft. Despite the hazard posed by a laptop fire, there is little quantitative data on the fire size, heat release and toxic product formation. This paper presents the results of initial attempts to quantify the fire resulting from a failed laptop fire tested at the NASA White Sands Test Facility (WSTF). The data from the testing is useful to attempt to determine the fire size and characteristics such as maximum heat release rate, total heat release, maximum temperatures and fire duration are determined. Using existing models and correlations for fires, the measured fire characteristics are extrapolated to laptop fires on a vehicle the approximate size of the Orion spacecraft.
    Keywords: Space Transportation and Safety
    Type: ICES-2019-188 , GRC-E-DAA-TN67087 , International Conference on Environmental Systems; Jul 07, 2019 - Jul 11, 2019; Boston, MA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-08-13
    Description: No abstract available
    Keywords: Metals and Metallic Materials; Mechanical Engineering
    Type: JSC-CN-36639 , International Conference on Environmental Systems; Jul 10, 2016 - Jul 14, 2016; Vienna; Austria
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-13
    Description: Many sources of fuel are present aboard current spacecraft, with one especially hazardous source of stored energy: lithium ion batteries. Lithium ion batteries are a very hazardous form of fuel due to their self-sustaining combustion once ignited, for example, by an external heat source. Batteries can become extremely energetic fire sources due to their high density electrochemical energy content that may, under duress, be violently converted to thermal energy and fire in the form of a thermal runaway. Currently, lithium ion batteries are the preferred types of batteries aboard international spacecraft and therefore are routinely installed, collectively forming a potentially devastating fire threat to a spacecraft and its crew. Currently NASA is developing a fine water mist portable fire extinguisher for future use on international spacecraft. As its development ensues, a need for the standard evaluation of various types of fire extinguishers against this potential threat is required to provide an unbiased means of comparing between fire extinguisher technologies and ranking them based on performance.
    Keywords: Chemistry and Materials (General)
    Type: International Conference on Environmental Systems (ICES); Jul 14, 2013 - Jul 18, 2013; Vail, CO; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-13
    Description: The ASTM G72/G72M-15 Standard Test Method for Autogenous Ignition Temperature of Liquids and Solids in a High-Pressure Oxygen-Enriched Environment is currently used to evaluate materials for the ignition susceptibility driven by exposure to external heat in an enriched oxygen environment. Testing performed on highly volatile liquids such as cleaning solvents has proven problematic due to inconsistent test results (non-ignitions). Non-ignition results can be misinterpreted as favorable oxygen compatibility, although they are more likely associated with inadequate fuel-to-oxidizer ratios. Forced evaporation during purging and inadequate sample size were identified as two potential causes for inadequate available sample material during testing. In an effort to maintain adequate fuel-to-oxidizer ratios within the reaction vessel during test, several parameters were considered, including sample size, pretest sample chilling, pretest purging, and test pressure. Tests on a variety of solvents exhibiting a range of volatilities are presented in this paper. A proposed improvement to the standard test protocol as a result of this evaluation is also presented. Execution of the final proposed improved test protocol outlines an incremental step method of determining optimal conditions using increased sample sizes while considering test system safety limits. The proposed improved test method increases confidence in results obtained by utilizing the ASTM G72 autogenous ignition temperature test method and can aid in the oxygen compatibility assessment of highly volatile liquids and other conditions that may lead to false non-ignition results.
    Keywords: Inorganic, Organic and Physical Chemistry
    Type: JSC-CN-36060 , International Symposium on Flammability and Sensitivity of Materials in Oxygen-Enriched Atmospheres; Apr 13, 2016 - Apr 15, 2016; San Antonio, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-07-13
    Description: NASA performed testing to evaluate the efficacy of fire containment boxes without forced ventilation. Configurational flammability testing was performed on a simulation avionics box replicating critical design features and filled with materials possessing representative flammability characteristics. This paper discusses the box's ability, under simulated end-use conditions, to inhibit the propagation of combustion to surrounding materials. Analysis was also performed to evaluate the potential for the fire containment box to serve as an overheat/ignition source to temperature sensitive equipment (such as items with lithium-ion batteries). Unrealistically severe combustion scenarios were used as a means to better understand the fire containment mechanism. These scenarios were achieved by utilizing materials/fuels not typically used in space vehicles due to flammability concerns. Oxygen depletion, during combustion within the fire containment boxes, drove self-extinguishment and proved an effective method of fire containment
    Keywords: Spacecraft Design, Testing and Performance
    Type: STP-2015-0079 , JSC-CN-35121 , International Symposium on Flammability and Sensitivity of Materials in Oxygen-Enriched Atmospheres; Apr 13, 2016 - Apr 15, 2016; San Antonio, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Propellants and Fuels
    Type: JSC-CN-36059 , International Symposium on Flammability and Sensitivity of Materials in Oxygen-Enriched Atmospheres; Apr 13, 2016 - Apr 15, 2016; San Antonio, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...