ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Collection
Years
  • 1
    Publication Date: 2019-06-28
    Description: This paper presents the development of the light weight Phenolic Impregnated Carbon Ablators (PICA) and its thermal performance in a simulated heating environment for planetary entry vehicles. The PICA material was developed as a member of the Light Weight Ceramic Ablators (LCA's), and the manufacturing process of this material has since been significantly improved. The density of PICA material ranges from 14 to 20 lbm/ft(exp 3), having uniform resin distribution with and without a densified top surface. The thermal performance of PICA was evaluated in the Ames arc-jet facility at cold wall heat fluxes from 375 to 2,960 BtU/ft(exp 2)-s and surface pressures of 0.1 to 0.43 atm. Heat loads used in these tests varied from 5,500 to 29,600 BtU/ft(exp 2) and are representative of the entry conditions of the proposed Discovery Class Missions. Surface and in-depth temperatures were measured using optical pyrometers and thermocouples. Surface recession was also measured by using a template and a height gage. The ablation characteristics and efficiency of PICA are quantified by using the effective heat of ablation, and the thermal penetration response is evaluated from the thermal soak data. In addition, a comparison of thermal performance of standard and surface densified PICA is also discussed.
    Keywords: Composite Materials
    Type: NASA-TM-110440 , NAS 1.15:110440 , A-976112
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-18
    Description: This paper presents the qualification of the light weight Phenolic Impregnated Carbon Ablators (PICA) as the forebody heatshield for the Stardust Discovery Class Mission. The Stardust spacecraft will be launched in early 1999 and fly by Comet Wild-2 to collect cometary and interstellar dust and return them back to earth in the Sample Return Capsule (SRC). This earth re-entry will be the fastest to date, at 12.6 km/s, and therefore requires a heatshield that can withstand very high heating rates and stagnation pressures, as well as provide the necessary insulation to the vehicle structure. The PICA material was developed as part of the Lightweight Ceramic Ablators program at NASA Ames Research Center, and was baselined as the forebody heatshield because of its low density and superior ablation and thermal performance at severe aerothermodynamic conditions. Under a Small Business Innovative Research (SBIR) program with NASA Ames, Fiber Materials, Inc. developed a process to manufacture a single-piece PICA heatshield for the forebody of the SRC, along with witness material for the fabrication of the test models. The test models were fabricated and instrumented by the staff of Lockheed Martin Astronautics in Denver, Colorado. Full body preliminary aerothermal CFD calculations were performed at NASA Ames to determine the heating and stagnation pressure conditions. The Heat shield sizing was also performed at NASA Ames by using a new material response code that accounts for the highly porous characteristics of the PICA material. The ablation and thermal performance of PICA was qualified in the NASA Ames Interaction Heating Arc Jet Facility. A total of 24 models and four test conditions were used to qualify PICA at the predicted peak heat flux, heat load, shear, and stagnation pressure conditions. Surface and in-depth temperatures were measured using optical pyrometers and thermocouples. Surface recession was measured by using a template and a height gage. Several models were tested to evaluate repair procedures, and two models were cold soaked in liquid nitrogen, prior th testing, to investigate the effect of the cold space environment on the performance of the material. In addition, material cored from a demonstration single-piece heatshield was tested to verify that the PICA process can be successfully completed on a large, complex heatshield shape.
    Keywords: Nonmetallic Materials
    Type: 32nd AIAA Thermophysics Conference; Jun 23, 1997 - Jun 25, 1997; Atlanta, GA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...