ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Collection
Publisher
Years
  • 1
    Publication Date: 2014-03-26
    Description: The role of stream networks and their hydrologic interaction with hillslopes and shallow groundwater in modifying and transporting watershed signals is an area of active research. One of the primary ways that stream networks can modify watershed signals is through spatially variable stream gains and losses, described herein as hydrologic turnover. We measured hydrologic gain and loss at the reach scale using tracer experiments throughout the Bull Trout Watershed in the Sawtooth Mountains of Idaho. We extended the results of reach scale experiments to the stream network using empirical relationships between 1) watershed area and stream discharge, and 2) stream discharge and percent streamwater loss to the groundwater system. We thus incorporate linkages between 1) hillslopes and stream networks via lateral inflows and 2) stream networks and shallow groundwater via hydrologic exchange. We implemented these relationships within a concise analytical framework to simulate hydrologic turnover across stream networks and estimate the variable influence exerted by upstream reaches and streamflow source locations on stream water composition across stream networks. Application to six natural Sawtooth watersheds and seven synthetic watersheds with varying topographic structure and stream network geometry indicated that contributions to discharge from any upstream source depend on the magnitude of the initial input, but also on the distribution of hydrologic turnover occurring along the stream network. The evolution of stream water source compositions along stream networks was unique in each watershed due to the combination of watershed structure and stream network geometry. Our results suggest that a distributed representation of hydrologic turnover at the stream network scale can improve understanding of how the stream network can modify source water compositions along the stream.
    Print ISSN: 0043-1397
    Electronic ISSN: 1944-7973
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...