ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2018-06-06
    Description: An experimental investigation is described in which a simple speaker-driven jet was used as a pulsed thrust source (driver) for an ejector configuration. The objectives of the investigation were twofold. The first was to expand the experimental body of evidence showing that an unsteady thrust source, combined with a properly sized ejector generally yields higher thrust augmentation values than a similarly sized, steady driver of equivalent thrust. The second objective was to identify characteristics of the unsteady driver that may be useful for sizing ejectors, and for predicting the thrust augmentation levels that may be achieved. The speaker-driven jet provided a convenient source for the investigation because it is entirely unsteady (i.e., it has no mean velocity component) and because relevant parameters such as frequency, time-averaged thrust, and diameter are easily variable. The experimental setup will be described, as will the two main measurements techniques employed. These are thrust and digital particle imaging velocimetry of the driver. It will be shown that thrust augmentation values as high as 1.8 were obtained, that the diameter of the best ejector scaled with the dimensions of the emitted vortex, and that the so-called formation time serves as a useful dimensionless parameter by which to characterize the jet and predict performance.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: AIAA Journal; Volume 45; No. 3; 607-614
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-13
    Description: An experimental investigation is described in which a simple speaker-driven jet was used as a pulsed thrust source (driver) for an ejector configuration. The objectives of the investigation were twofold: first, to add to the experimental body of evidence showing that an unsteady thrust source, combined with a properly sized ejector generally yields higher thrust augmentation values than a similarly sized, steady driver of equivalent thrust. Second, to identify characteristics of the unsteady driver that may be useful for sizing ejectors, and predicting what thrust augmentation values may be achieved. The speaker-driven jet provided a convenient source for the investigation because it is entirely unsteady (having no mean component) and because relevant parameters such as frequency, time-averaged thrust, and diameter are easily variable. The experimental setup will be described, as will the various measurements made. These include both thrust and Digital Particle Imaging Velocimetry of the driver. It will be shown that thrust augmentation values as high as 1.8 were obtained, that the diameter of the best ejector scaled with the dimensions of the emitted vortex, and that the so-called Formation Number serves as a useful dimensionless number by which to characterize the jet and predict performance.
    Keywords: Aircraft Propulsion and Power
    Type: NASA/TM-2004-212909 , AIAA Paper 2004-0092 , E-14332 , 42nd Aerospace Sciences Meeting and Exhibit; Jan 05, 2004 - Jan 08, 2004; Reno, NV; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-13
    Description: The development of a robust regolith moving system for lunar and planetary processing and construction is critical to the NASA mission to the Moon and Mars. Oxygen production may require up to 200 metric tons of regolith collection per year; outpost site development may require several times this amount. This paper describes progress in the small vehicle implement development and small excavation system development. Cratos was developed as a platform for the ISRU project to evaluate the performance characteristics of a low center of gravity, small (0.75m x 0.75m x 0.3m), low-power, tracked vehicle performing excavation, load, haul, and dump operations required for lunar ISRU. It was tested on loose sand in a facility capable of producing level and inclined surfaces, and demonstrated the capability to pick up, carry, and dump sand, allowing it to accomplish the delivery of material to a site. Cratos has demonstrated the capability to pick up and deliver simulant to a bury an inflatable habitat, to supply an oxygen production plant, and to build a ramp.
    Keywords: Lunar and Planetary Science and Exploration
    Type: 4th Annual AIAA Conference; Jan 07, 2008; Reno, NV; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-13
    Description: The development of a robust excavating and hauling system for lunar and planetary excavation is critical to the NASA mission to the Moon and Mars. Cratos was developed as a low center of gravity, small (.75m x .75m x 0.3m), low power tracked test vehicle. The vehicle was modified to excavate and haul because it demonstrated good performance capabilities in a laboratory and field testing. Tested on loose sand in the SLOPE facility, the vehicle was able to pick up, carry, and dump sand, allowing it to accomplish the standard requirements delivery of material to a lunar oxygen production site. Cratos can pick up and deliver raw material to a production plant, as well as deliver spent tailings to a disposal site. The vehicle can complete many other In-Situ Resource Utilization (ISRU) excavation chores and in conjunction with another vehicle or with additional attachments may be able to accomplish all needed ISRU tasks.
    Keywords: Lunar and Planetary Science and Exploration
    Type: PTMSS Conference; Jun 10, 2007 - Jun 13, 2007; Sudbury, Ontario; Canada
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...