ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: Time-resolved small-angle neutron scattering (SANS) experiments have been performed on the self-assembling process of a binary mixture of deuterated polybutadiene and protonated polybutadiene at the critical composition. This mixture has an upper critical solution temperature type of phase diagram with the spinodal temperature at 99.2 °C. Specimens held in the single-phase state at an initial temperature (Ti) were quenched to a point inside the spinodal phase boundary at a final temperature (Tf) to induce phase separation via spinodal decomposition (SD). In order to examine the effect that thermal concentration fluctuations have on SD, three different initial temperatures, Ti=102.3 °C, 123.9 °C, and 171.6 °C, were chosen while Tf was fixed at −7.5 °C. The time-dependent SANS structure factor, S(q,t;Tf), showed clear scattering peaks corresponding to the early and intermediate stages of SD. The time changes in the wave number qm(t;Tf) and the intensity Sm(t;Tf) at the peak of S(q,t;Tf) followed different paths depending on the initial temperature. This fact evidences a definite effect of thermal concentration fluctuations on SD (i.e., a significant "memory'' effect). A critical test of the linearized Cahn–Hilliard–Cook theory led to the conclusion that this theory can describe satisfactorily the early stage SD in the deep-quench region.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: The spinodal decomposition (SD) of a critical mixture of deuterated and protonated polybutadiene of nearly equal chain lengths was investigated. This mixture has an upper critical solution temperature type phase diagram and the spinodal temperature at the critical point is 99.2 °C. Phase separation was induced by quenching a single-phase specimen at an initial temperature, Ti (=102.3, 123.9, and 171.6 °C), to a final temperature, Tf (=−7.5, 1.1, and 10.5 °C). The subsequent SD was followed by time-resolved small-angle neutron scattering. The Onsager coefficient, Λ(q;Tf), as a function of wave number q and Tf, derived from experimental growth rates, R(q;Tf), of the Fourier mode of concentration fluctuations and estimation of ST(q;Tf), was compared to the reptation model theories of Pincus and Binder. Experimental Λ(q;Tf) was found to give a q-dependence greater than that given by the theories. Here, ST(q;Tf) denotes the virtual structure factor at Tf inside the spinodal region. The reduced wave number Qm(τ) and intensity S˜m(τ) at the peak of the scattering structure factor in the early and intermediate stages of SD were found to be scalable in terms of a reduced time τ when Ti was fixed and Tf was varied, but not when Tf was fixed and Ti was varied. The failure of the scaling law in the latter instance may be attributed to the fact that the concentration fluctuation at the onset of SD has a different memory of the thermal concentration fluctuation in the single-phase region depending on Ti, which affects the subsequent SD over an extended period of time.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 113 (2000), S. 3414-3422 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: A two-step phase separation was imposed to a binary mixture of deuterated polybutadiene and protonated polyisoprene with nearly critical composition in the following way: the system was first subjected to phase separation via spinodal decomposition (SD) so that the system developed coexisting two phases characteristics of the late stage of SD (the first-step phase separation). It was then brought into a deeper quench so that both two phases again fell into spinodal region and hence further SD took place within each phase (the second-step phase separation at T2). In the very early stage after this second-step phase separation, the two-phase structure developed in the first-step phase separation was almost unchanged with time, but the composition fluctuation was newly developed within each phase, giving rise to an excess light scattering (LS) at large scattering vectors. The very early stage in this second-step phase separation process was studied by time-resolved LS. We found that the early-stage SD after the second-step phase separation at T2 can be well described by the linearized theory of SD. However the characteristic parameters, especially the collective diffusivity, obtained from the linear analysis, were different from those obtained by the single-step SD at T2 for the corresponding single-phase mixtures. The results unveil an intriguing effect of initial structure or space confinement on early stage SD, reflecting an intrinsically nonlinear phenomenon. © 2000 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1520-5835
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology , Physics
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    Macromolecules 28 (1995), S. 4782-4784 
    ISSN: 1520-5835
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology , Physics
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1520-5835
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology , Physics
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    ISSN: 1520-5835
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology , Physics
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    ISSN: 1520-5835
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology , Physics
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 112 (2000), S. 6897-6909 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: Nonlinear time evolution of phase-separating structures in the two-step phase separation process was investigated for a deuterated polybutadiene–polyisoprene mixture by using a time-resolved light scattering technique. The mixture studied has a lower critical solution temperature type phase diagram with a spinodal temperature of 36 °C. The first-step phase separation via spinodal decomposition (SD) was conducted by a temperature jump (T-jump) from 23 °C to 42 °C, and to the late stage of the SD for varying time periods, t0, in order to develop phase-separated domains with varying characteristic size Λm,1. This phase separation was followed by the second-step T-jump to a higher temperature of 70 °C so that each phase-separated domain is again quenched into thermodynamically unstable region. Nonlinear time evolution processes of phase-separating structures after the second-step SD were explored as a function of size of the initial structures Λm,1. We found the following intriguing effects of the initial structures on further evolution of phase-separating structure via the second-step SD: (1) When Λm,1(very-much-greater-than)Λm,0 (characteristic length of composition fluctuations developed in the early stage SD after quenching the system from a single-phase state to 70 °C), small domains were evolved within the initial domains (defined as large domains) developed during the first-step SD process, while (2) when Λm,1≤Λm,0, the small domains were not developed, but only the large domains grew at a growth rate larger than that at 42 °C. In the former case (1), we succeeded in separating the scattering due to the small domains and that due to large domains from the observed scattering profile. The separation allows us to investigate a coupling of the time evolution of the large and small domains and nonlinear pathways for the system to achieve a new equilibrium structure after the second-step SD process. © 2000 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 112 (2000), S. 6886-6896 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: Time-resolved light scattering experiments have been performed on the two-step phase separation process for a binary mixture of deuterated polybutadiene and protonated polyisoprene with the critical composition. The first-step phase separation was induced by quenching the system from a temperature T0 in a single-phase state to T1. At various times in the late stage spinodal decomposition (SD) at T1, the mixture was further subjected to the second-step phase separation by temperature jump (T-jump) from T1 to T2 in such a way that the driving force for the phase separation increases and hence phase separation process is accelerated. The comparison between the single-step phase separation behavior from T0 to T1 or to T2 and the two-step phase separation behavior was made in terms of the time evolution of the main scattering peak arising from a dominant mode of the composition fluctuations developed in the phase separation process. To do so, we proposed and applied a new scaling method for the scattering peak position, qm,1, and intensity, Im,1, to explore the time evolution of the fluctuations for the two-step phase separation process. The new scaling method, which takes into account an abrupt change in the spatio-temporal scale of phase-separating system involved by the second-step T-jump clearly elucidates a nonlinear pathway according to which the initial structures developed in the first-step process is relaxed and transformed toward an equilibrium structure at T2 after the second-step process. © 2000 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...