ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1573-4803
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Abstract Type II carbon fibres (PAN-based) have been electrochemically oxidized in aqueous potassium nitrate to varying electron charge densities (0–4294 Cg-1). The fibres were subsequently characterized by angle-resolved X-ray photoelectron spectroscopy (ARXPS) and ion scattering spectroscopy (ISS) and the results were correlated to acid/base surface titrations and BET surface area measurements. Relative to the as-received fibres (commercially treated, but unsized), the electrochemical treatments increased the ARXPS O/C atomic ratios by approximately 50%–100% and the concentration of oxidized carbon became more uniform within the XPS sampling depth (≈10 nm). At the same time, the number of acidic functions titrated by sodium hydroxide rose from about 2.6 μeq g-1 to 1078 μeq g-1, and the BET surface area increased from 0.67 m2 g-1 to 2.9 m2 g-1. A large portion of the increase in acidic groups was due to the increased fibre oxidation below the XPS sampling depth. The surface densities of acidic functions (functions/nm2) determined from NaOH uptake and nitrogen BET surface area experiments were far larger than is physically possible. Thus, it is postulated that aqueous NaOH solutions are able to access a much larger surface region than can be measured by nitrogen BET. A model involving subsurface pores, voids, crevasses, etc., which become available via swelling during solvation in aqueous NaOH, but are at least partially closed off when dry (during BET measurements), was proposed. The quantity of acidic functions introduced (detected by NaOH) was directly proportional to the extent of oxidation as referenced to the electron charge density (C g-1). The ISS spectra suggest that the surface density of carbon/oxygen groups was also increased. Single-fibre fragmentation tests (using an epoxy resin matrix) revealed that in most cases the interfacial shear strengths (IFSS) increased with increasing ARXPS O/C atomic ratio probably due to enhanced fibre/matrix chemical bonding and/or mechanical interlocking. As the extent of the electrochemical oxidation progressed above 1500 C g-1 the IFSS of single filament specimens then began to decrease. This was due to a continuing decrease in filament tensile strength as the extent of electro-oxidation increased. The critical transfer length, Lc, also decreased from ∼0.36 mm to ∼0.18 mm as the extent of electro-oxidation proceeded. Electrochemically oxidized fibres were compared to nitric acid-oxidized fibres in terms of acidic groups generated, BET surface areas, acidic group surface densities, dye adsorption with methylene blue and the role of aqueous NaOH in exposing some of the microstructure created by oxidative processes. © 1998 Kluwer Academic Publishers
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 1998-06-01
    Print ISSN: 0022-2461
    Electronic ISSN: 1573-4803
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019
    Description: Abstract Scale height measures the altitude gradient of the electron density profile and relates with the ionospheric chemistry and dynamics, while its longitudinal variation has not been fully investigated in both statistical analyses and empirical modelings. In this study, eleven‐year electron density profiles from Constellation Observing System for Meteorology, Ionosphere, and Climate (COSMIC) radio occultations are collected to retrieve the α‐Chapman scale height (Hm) from the lower topside ionospheric electron density profile (within 200 km altitudes above the peak height of F2 layer (hmF2)) by fitting α‐Chapman function with a constant scale height. The Hm shows evident longitudinal variations at mid latitudes and its zonal structure shows a consistency with that of hmF2 during daytime, which indicates neutral winds change the ionospheric height and shape at the same time. Further, a global modeling of Hm named 2PCAFourier‐Hm is built based on a two‐layer Principle Component Analysis combined with Fourier regression analysis of its coefficients under low and moderated solar activity. Longitudinal variation is considered in the Hm’s modeling, along with the variations of local time, latitude, day of the year, and solar activity. Overall, the model well captures the temporal and spatial variations of Hm with a root‐mean‐square‐error of 2.25 km and a correlation coefficient of 0.97 with respect to the COSMIC observations.
    Print ISSN: 2169-9380
    Electronic ISSN: 2169-9402
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2017-10-08
    Description: Sensors, Vol. 17, Pages 2285: High-Accuracy Decoupling Estimation of the Systematic Coordinate Errors of an INS and Intensified High Dynamic Star Tracker Based on the Constrained Least Squares Method Sensors doi: 10.3390/s17102285 Authors: Jie Jiang Wenbo Yu Guangjun Zhang Navigation accuracy is one of the key performance indicators of an inertial navigation system (INS). Requirements for an accuracy assessment of an INS in a real work environment are exceedingly urgent because of enormous differences between real work and laboratory test environments. An attitude accuracy assessment of an INS based on the intensified high dynamic star tracker (IHDST) is particularly suitable for a real complex dynamic environment. However, the coupled systematic coordinate errors of an INS and the IHDST severely decrease the attitude assessment accuracy of an INS. Given that, a high-accuracy decoupling estimation method of the above systematic coordinate errors based on the constrained least squares (CLS) method is proposed in this paper. The reference frame of the IHDST is firstly converted to be consistent with that of the INS because their reference frames are completely different. Thereafter, the decoupling estimation model of the systematic coordinate errors is established and the CLS-based optimization method is utilized to estimate errors accurately. After compensating for error, the attitude accuracy of an INS can be assessed based on IHDST accurately. Both simulated experiments and real flight experiments of aircraft are conducted, and the experimental results demonstrate that the proposed method is effective and shows excellent performance for the attitude accuracy assessment of an INS in a real work environment.
    Electronic ISSN: 1424-8220
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2017-02-09
    Description: Marine environmental monitoring provides crucial information and support for the exploitation, utilization, and protection of marine resources. With the rapid development of information technology, the development of three-dimensional underwater acoustic sensor networks (3D UASNs) provides a novel strategy to acquire marine environment information conveniently, efficiently and accurately. However, the specific propagation effects of acoustic communication channel lead to decreased successful information delivery probability with increased distance. Therefore, we investigate two probabilistic neighborhood-based data collection algorithms for 3D UASNs which are based on a probabilistic acoustic communication model instead of the traditional deterministic acoustic communication model. An autonomous underwater vehicle (AUV) is employed to traverse along the designed path to collect data from neighborhoods. For 3D UASNs without prior deployment knowledge, partitioning the network into grids can allow the AUV to visit the central location of each grid for data collection. For 3D UASNs in which the deployment knowledge is known in advance, the AUV only needs to visit several selected locations by constructing a minimum probabilistic neighborhood covering set to reduce data latency. Otherwise, by increasing the transmission rounds, our proposed algorithms can provide a tradeoff between data collection latency and information gain. These algorithms are compared with basic Nearest-neighbor Heuristic algorithm via simulations. Simulation analyses show that our proposed algorithms can efficiently reduce the average data collection completion time, corresponding to a decrease of data latency.
    Electronic ISSN: 1424-8220
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2017-03-31
    Description: The interactions of pathogens and phagocytes are complex. Our study demonstrated that Aeromonas hydrophila B11 can survive in the macrophagocytes of Tilapia mossambica . To explore the regulatory processes of A. hydrophila survival in the macrophagocytes, we used the mini- Tn10 transposon mutagenesis system to build a mutant library by mixing Escherichia coli Sm10 (pLOFKm) and A. hydrophila B11. In total, 102 mutant colonies were detected, and 11 of them showed reduced survival in macrophagocytes. The mutant with the most severe phenotype, AM73, was chosen for further research. The ORF interrupted by mini- Tn10 in AM73 was approximately 960 bp and was deposited in GenBank with the accession number SRP049226. The 319 amino acid protein encoded by the ORF showed a high degree of identity (89%) with proteins in the histone deacetylase/AcuC/AphA family of A. hydrophila subsp. hydrophila ATCC7966. A strain (AC73) in which the acuC mutation was complemented was constructed by generating the recombinant expression plasmid pACYC184- acuC and introducing it into the AM73 mutant strain. Our experiments revealed that strain AM73 was deficient in biofilm formation, adhesion, survival in macrophagocytes, and virulence compared with A. hydrophila B11, and all of these biological properties were improved in strain AC73. The expression of 10 significant virulence genes was significantly inhibited in strain AM73. The results indicated that AcuC was an important regulatory protein contributing to the pathogenicity of A. hydrophila . A mutant library of A. hydrophila was built by mini-Tn10 transposon mutagenesis system. Strain AM73 was deficient in biofilm formation, adhesion, survival in macrophagocytes, and virulence compared with A. hydrophila B11 and AC73.
    Electronic ISSN: 2045-8827
    Topics: Biology , Medicine
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
  • 8
    Publication Date: 2020-04-30
    Description: The current research results indicate that the insulator’s insulation performance has a very important influence on the back-flashover lightning withstand performance of UHVDC transmission lines, especially for ±800 kV voltage level. However, it is not clear which factors will influence the insulation performance of the insulator, and the influencing mechanism is also not clear yet. To figure out this problem, the insulator’s insulation performance under different conditions has been deeply analyzed and considered to reveal the influence mechanism in this paper, such as the surface hydrophobicity, pollution degree, and the string type. Firstly, the insulator’s model is established using COMSOL software, and the lightning impulse voltage of insulator is calculated and verified with the corresponding experimental data. Then, the ±800 kV UHVDC transmission lines model is constructed using PSCAD software, and back-flashover lightning withstand level and back-flashover rate are calculated by considering the above lightning impulse voltage as the threshold of flashover. Finally, the back-flashover lightning withstand performance of ±800 kV UHVDC transmission lines is deeply analyzed based on different insulators. The simulation results demonstrate that the back-flashover lightning withstand performance of ±800 kV UHVDC transmission lines is obviously weakened with the increase of the pollution degree and slightly weakened with the decrease of the surface hydrophobicity. Considering the same pollution degree, the V-type string insulator has the least influence, while the II-type string insulator has the greatest influences on the back-flashover lightning withstand performance of ±800 kV UHVDC transmission lines. The research results are beneficial for providing theoretical basis for stable operation and reliable power supply of ±800 kV UHVDC transmission lines.
    Print ISSN: 1024-123X
    Electronic ISSN: 1563-5147
    Topics: Mathematics , Technology
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2020-06-25
    Electronic ISSN: 1932-6203
    Topics: Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2020-10-01
    Print ISSN: 0016-0032
    Electronic ISSN: 1879-2693
    Topics: Mathematics , Technology
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...