ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Collection
Years
  • 1
    Publication Date: 2017-12-26
    Print ISSN: 1367-4803
    Electronic ISSN: 1460-2059
    Topics: Biology , Computer Science , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-03-09
    Description: Motivation MEDLINE is the primary bibliographic database maintained by National Library of Medicine (NLM). MEDLINE citations are indexed with Medical Subject Headings (MeSH), which is a controlled vocabulary curated by the NLM experts. This greatly facilitates the applications of biomedical research and knowledge discovery. Currently, MeSH indexing is manually performed by human experts. To reduce the time and monetary cost associated with manual annotation, many automatic MeSH indexing systems have been proposed to assist manual annotation, including DeepMeSH and NLM’s official model Medical Text Indexer (MTI). However, the existing models usually rely on the intermediate results of other models and suffer from efficiency issues. We propose an end-to-end framework, MeSHProbeNet (formerly named as xgx), which utilizes deep learning and self-attentive MeSH probes to index MeSH terms. Each MeSH probe enables the model to extract one specific aspect of biomedical knowledge from an input article, thus comprehensive biomedical information can be extracted with different MeSH probes and interpretability can be achieved at word level. MeSH terms are finally recommended with a unified classifier, making MeSHProbeNet both time efficient and space efficient. Results MeSHProbeNet won the first place in the latest batch of Task A in the 2018 BioASQ challenge. The result on the last test set of the challenge is reported in this paper. Compared with other state-of-the-art models, such as MTI and DeepMeSH, MeSHProbeNet achieves the highest scores in all the F-measures, including Example Based F-Measure, Macro F-Measure, Micro F-Measure, Hierarchical F-Measure and Lowest Common Ancestor F-measure. We also intuitively show how MeSHProbeNet is able to extract comprehensive biomedical knowledge from an input article.
    Print ISSN: 1367-4803
    Electronic ISSN: 1460-2059
    Topics: Biology , Computer Science , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2021-02-03
    Description: Motivation Many real-world biomedical interactions such as ‘gene-disease’, ‘disease-symptom’ and ‘drug-target’ are modeled as a bipartite network structure. Learning meaningful representations for such networks is a fundamental problem in the research area of Network Representation Learning (NRL). NRL approaches aim to translate the network structure into low-dimensional vector representations that are useful to a variety of biomedical applications. Despite significant advances, the existing approaches still have certain limitations. First, a majority of these approaches do not model the unique topological properties of bipartite networks. Consequently, their straightforward application to the bipartite graphs yields unsatisfactory results. Second, the existing approaches typically learn representations from static networks. This is limiting for the biomedical bipartite networks that evolve at a rapid pace, and thus necessitate the development of approaches that can update the representations in an online fashion. Results In this research, we propose a novel representation learning approach that accurately preserves the intricate bipartite structure, and efficiently updates the node representations. Specifically, we design a customized autoencoder that captures the proximity relationship between nodes participating in the bipartite bicliques (2 × 2 sub-graph), while preserving both the global and local structures. Moreover, the proposed structure-preserving technique is carefully interleaved with the central tenets of continual machine learning to design an incremental learning strategy that updates the node representations in an online manner. Taken together, the proposed approach produces meaningful representations with high fidelity and computational efficiency. Extensive experiments conducted on several biomedical bipartite networks validate the effectiveness and rationality of the proposed approach.
    Print ISSN: 1367-4803
    Electronic ISSN: 1460-2059
    Topics: Biology , Computer Science , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2021-09-23
    Description: Motivation Biomedical language models produce meaningful concept representations that are useful for a variety of biomedical natural language processing (bioNLP) applications such as named entity recognition, relationship extraction, and question answering. Recent research trends have shown that the contextualized language models (e.g., BioBERT, BioELMo) possess tremendous representational power and are able to achieve impressive accuracy gains. However, these models are still unable to learn high-quality representations for concepts with low context information (i.e., rare words). Infusing the complementary information from knowledge-bases (KBs) is likely to be helpful when the corpus-specific information is insufficient to learn robust representations. Moreover, as the biomedical domain contains numerous KBs, it is imperative to develop approaches that can integrate the KBs in a continual fashion. Results We propose a new representation learning approach that progressively fuses the semantic information from multiple KBs into the pretrained biomedical language models. Since most of the KBs in the biomedical domain are expressed as parent-child hierarchies, we choose to model the hierarchical KBs and propose a new knowledge modeling strategy that encodes their topological properties at a granular level. Moreover, the proposed continual learning technique efficiently updates the concepts representations to accommodate the new knowledge whilst preserving the memory efficiency of contextualized language models. Altogether, the proposed approach generates knowledge-powered embeddings with high fidelity and learning efficiency. Extensive experiments conducted on bioNLP tasks validate the efficacy of the proposed approach and demonstrates its capability in generating robust concept representations. Supplementary information Supplementary data are available at Bioinformatics online.
    Print ISSN: 1367-4803
    Electronic ISSN: 1460-2059
    Topics: Biology , Computer Science , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...