ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Collection
Years
  • 1
    Publication Date: 2012-08-24
    Description: SUMMARY Environmental magnetism uses the spatial and temporal occurrence of magnetic carriers as diagnostic tools to detect environmental changes. Concentration, composition, grain size and configuration of the carriers inferred from magnetic properties are key parameters, because they are indicative of the formation conditions of magnetic phases, and/or of processes such as diagenesis and weathering. We present a detailed ferromagnetic resonance (FMR) spectroscopy analysis in concert with routinely used rock magnetic measurements to determine these parameters in a sediment record that documents the development of Lake Soppensee (Central Switzerland) since latest Pleistocene. FMR spectroscopy monitors varying concentration of the predominant magnetite/maghemite by the spectral signal intensity, whereas the stable single domain and superparamagnetic states are determined by the signal shape at room and low temperature. Fitting and simulation of FMR spectra are successfully applied to samples with well-defined magnetite components in the sediment matrix. Clear evidence for the colonization of magnetotactic bacteria (MTB) in Lake Soppensee was possible by applying empirical spectral separation to measured FMR signals that yield two magnetite populations differing in their configuration, that is, dispersed and aligned in chains. Low temperature measurements showed that these MTB can be preserved as pure or oxidized magnetite. The FMR data set confirms and completes rock magnetic information obtained from the lacustrine sedimentary record. The advanced application of FMR spectroscopy in the presented study critically highlights the benefit of this rapid and non-destructive method for future analysis of magnetic properties in environmental studies.
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...