ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Collection
Years
  • 1
    Publication Date: 2016-03-25
    Description: Simulations of strongly coupled (i.e., high-mass-loading) fluid-particle flows in vertical channels are performed with the purpose of understanding the fundamental physics of wall-bounded multiphase turbulence. The exact Reynolds-averaged (RA) equations for high-mass-loading suspensions are presented, and the unclosed terms that are retained in the context of fully developed channel flow are evaluated in an Eulerian–Lagrangian (EL) framework for the first time. A key distinction between the RA formulation presented in the current work and previous derivations of multiphase turbulence models is the partitioning of the particle velocity fluctuations into spatially correlated and uncorrelated components, used to define the components of the particle-phase turbulent kinetic energy (TKE) and granular temperature, respectively. The adaptive spatial filtering technique developed in our previous work for homogeneous flows [J. Capecelatro, O. Desjardins, and R. O. Fox, “Numerical study of collisional particle dynamics in cluster-induced turbulence,” J. Fluid Mech. 747 , R2 (2014)] is shown to accurately partition the particle velocity fluctuations at all distances from the wall. Strong segregation in the components of granular energy is observed, with the largest values of particle-phase TKE associated with clusters falling near the channel wall, while maximum granular temperature is observed at the center of the channel. The anisotropy of the Reynolds stresses both near the wall and far away is found to be a crucial component for understanding the distribution of the particle-phase volume fraction. In Part II of this paper, results from the EL simulations are used to validate a multiphase Reynolds-stress turbulence model that correctly predicts the wall-normal distribution of the two-phase turbulence statistics.
    Print ISSN: 1070-6631
    Electronic ISSN: 1089-7666
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2016-03-25
    Description: In Part I, simulations of strongly coupled fluid-particle flow in a vertical channel were performed with the purpose of understanding, in general, the fundamental physics of wall-bounded multiphase turbulence and, in particular, the roles of the spatially correlated and uncorrelated components of the particle velocity. The exact Reynolds-averaged (RA) equations for high-mass-loading suspensions were presented, and the unclosed terms that are retained in the context of fully developed channel flow were evaluated in an Eulerian–Lagrangian (EL) framework. Here, data from the EL simulations are used to validate a multiphase Reynolds-stress model (RSM) that predicts the wall-normal distribution of the two-phase, one-point turbulence statistics up to second order. It is shown that the anisotropy of the Reynolds stresses both near the wall and far away is a crucial component for predicting the distribution of the RA particle-phase volume fraction. Moreover, the decomposition of the phase-average (PA) particle-phase fluctuating energy into the spatially correlated and uncorrelated components is necessary to account for the boundary conditions at the wall. When these factors are properly accounted for in the RSM, the agreement with the EL turbulence statistics is satisfactory at first order (e.g., PA velocities) but less so at second order (e.g., PA turbulent kinetic energy). Finally, an algebraic stress model for the PA particle-phase pressure tensor and the Reynolds stresses is derived from the RSM using the weak-equilibrium assumption.
    Print ISSN: 1070-6631
    Electronic ISSN: 1089-7666
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...