ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2018-01-01
    Print ISSN: 0043-1397
    Electronic ISSN: 1944-7973
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2020-07-10
    Description: The streamflow seasonality in mountain catchments is often influenced by snow. However, a shift from snowfall to rain is expected in the future. Consequently, a decrease in snow storage and earlier snowmelt is predicted, which will cause changes not only in seasonal runoff distribution in snow-dominated catchments, but it may also affect the total annual runoff. The objectives of this study were to quantify (1) how inter-annual variations in snow storages affect spring and summer runoff, including summer low flows, and (2) the importance of snowmelt in generating runoff compared to rainfall. The snow storage, groundwater recharge and streamflow were simulated for 59 mountain catchments in Czechia in the period from 1980 to 2014 using a bucket-type catchment model. The model output was evaluated against observed daily runoff and snow water equivalent. Hypothetical scenarios were performed, which allowed for analysing the effect of inter-annual variations in snow storage on seasonal runoff separately from other components of the water balance. The results showed that 17 %–42 % (26 % on average) of the total runoff in the study catchments originates as snowmelt, despite the fact that only 12 %–37 % (20 % on average) of the precipitation falls as snow. This means that snow is more effective in generating catchment runoff compared to liquid precipitation. This was demonstrated by modelling experiments which showed that total annual runoff and groundwater recharge decrease in the case of a precipitation shift from snow to rain. In general, snow-poor years were clearly characterized by a lower snowmelt runoff contribution compared to snow-rich years in the analysed period. Additionally, snowmelt started earlier in these snow-poor years and caused lower groundwater recharge. This also affected summer baseflow. For most of the catchments, the lowest summer baseflow was reached in years with both relatively low summer precipitation and snow storage. This showed that summer low flows (directly related to baseflow) in our study catchments are not only a function of low precipitation and high evapotranspiration, but they are significantly affected by the previous winter snowpack. This effect might intensify drought periods in the future when generally less snow is expected.
    Print ISSN: 1027-5606
    Electronic ISSN: 1607-7938
    Topics: Geography , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
  • 4
    Publication Date: 2020-09-15
    Description: Snow processes are a key component of the water cycle in mountainous areas as well as in many areas of the mid and high latitudes of the Earth. The complexity of these processes, coupled with the limited data available on them, has led to the development of different modelling approaches aimed at improving our understanding of these processes and supporting decision-making and management practices. Physically based approaches, such as the energy balance method, provide the best representation of snow processes, but limitations in data availability in many situations constrain their applicability in favour of more straightforward approaches. Indeed, the comparatively simple temperature-index method has become the most widely used modelling approach for representing snowpack processes in rainfall-runoff modelling, with different variants of this method implemented across many models. Nevertheless, the decisions on the most suitable degree of detail of the model are in many cases not adequately assessed for a given application. In this study we assessed the suitability of a number of formulations of different components of the simple temperature-index method for rainfall-runoff modelling in mountainous areas of central Europe by using the Hydrologiska Byråns Vattenbalansavdelning (HBV) bucket-type model. To this end, we reviewed the most widely used formulations of different components of temperature-based snow routines from different rainfall-runoff models and proposed a series of modifications to the default structure of the HBV model. We narrowed the choice of alternative formulations to those that provide a simple conceptualisation of the described processes in order to constrain parameter and model uncertainty. We analysed a total of 64 alternative snow routine structures over 54 catchments using a split-sample test. Overall, the most valuable modifications to the standard structure of the HBV snow routine were (a) using an exponential snowmelt function coupled with no refreezing and (b) computing melt rates with a seasonally variable degree-day factor. Our results also demonstrated that increasing the degree of detail of the temperature-based snow routines in rainfall-runoff models did not necessarily lead to an improved model performance per se. Instead, performing an analysis on which processes are to be included, and to which degree of detail, for a given model and application is a better approach to obtain more reliable and robust results.
    Print ISSN: 1027-5606
    Electronic ISSN: 1607-7938
    Topics: Geography , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-02-28
    Description: This study presents a novel approach in the application of Unmanned Aerial Vehicle (UAV) imaging for the conjoint assessment of the snow depth and winter leaf area index (LAI), a structural property of vegetation, affecting the snow accumulation and snowmelt. The snow depth estimation, based on a multi-temporal set of high-resolution digital surface models (DSMs) of snow-free and of snow-covered conditions, taken in a partially healthy to insect-induced Norway spruce forest and meadow coverage area within the Šumava National Park (Šumava NP) in the Czech Republic, was assessed over a winter season. The UAV-derived DSMs featured a resolution of 0.73–1.98 cm/pix. By subtracting the DSMs, the snow depth was determined and compared with manual snow probes taken at ground control point (GCP) positions, the root mean square error (RMSE) ranged between 0.08 m and 0.15 m. A comparative analysis of UAV-based snow depth with a denser network of arranged manual snow depth measurements yielded an RMSE between 0.16 m and 0.32 m. LAI assessment, crucial for correct interpretation of the snow depth distribution in forested areas, was based on downward-looking UAV images taken in the forest regime. To identify the canopy characteristics from downward-looking UAV images, the snow background was used instead of the sky fraction. Two conventional methods for the effective winter LAI retrieval, the LAI-2200 plant canopy analyzer, and digital hemispherical photography (DHP) were used as a reference. Apparent was the effect of canopy density and ground properties on the accuracy of DSMs assessment based on UAV imaging when compared to the field survey. The results of UAV-based LAI values provided estimates were comparable to values derived from the LAI-2200 plant canopy analyzer and DHP. Comparison with the conventional survey indicated that spring snow depth was overestimated, and spring LAI was underestimated by using UAV photogrammetry method. Since the snow depth and the LAI parameters are essential for snowpack studies, this combined method here will be of great value in the future to simplify snow depth and LAI assessment of snow dynamics.
    Electronic ISSN: 1424-8220
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2020-10-20
    Print ISSN: 0885-6087
    Electronic ISSN: 1099-1085
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2016-02-23
    Description: Winter snow accumulation obviously has an effect on the following catchment runoff. The question is, however, how long this effect lasts and how important it is compared to rainfall inputs. Here we investigate the relative importance of snow accumulation on one critical aspect of runoff, namely the summer low flow. This is especially relevant as the expected increase of air temperature might result in decreased snow storage. A decrease of snow will affect soil and groundwater storages during spring and might cause low streamflow values in the subsequent warm season. To understand these potential climate change impacts, a better evaluation of the effects of inter-annual variations in snow accumulation on summer low flow under current conditions is central. The objective in this study was (1) to quantify how long snowmelt affects runoff after melt-out and (2) to estimate the sensitivity of catchments with different elevation ranges to changes in snowpack. To find suitable predictors of summer low flow we used long time series from 14 Alpine and pre-Alpine catchments in Switzerland and computed different variables quantifying winter and spring snow conditions. In general, the results indicated that maximum winter snow water equivalent (SWE) influenced summer low flow, but could expectedly only partly explain the observed inter-annual variations. On average, a decrease of maximum SWE by 10 % caused a decrease of minimum discharge in July by 6–9 % in catchments higher than 2000 m a.s.l. This effect was smaller in middle- and lower-elevation catchments with a decrease of minimum discharge by 2–5 % per 10 % decrease of maximum SWE. For higher- and middle-elevation catchments and years with below-average SWE maximum, the minimum discharge in July decreased to 70–90 % of its normal level. Additionally, a reduction in SWE resulted in earlier low-flow occurrence in some cases. One other important factor was the precipitation between maximum SWE and summer low flow. When only dry preceding conditions in this period were considered, the importance of maximum SWE as a predictor of low flows increased. We assessed the sensitivity of individual catchments to the change of maximum SWE using the non-parametric Theil–Sen approach as well as an elasticity index. Both sensitivity indicators increased with increasing mean catchment elevation, indicating a higher sensitivity of summer low flow to snow accumulation in Alpine catchments compared to lower-elevation pre-Alpine catchments.
    Print ISSN: 1027-5606
    Electronic ISSN: 1607-7938
    Topics: Geography , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2009-09-01
    Description: Runoff changes in areas differing in land-use in the blanice river basin - application of the deterministic modelThe aim of this article is to present partial results of more extensive research which is focused on using different methods for runoff computation in areas differing in land use. With the help of the deterministic lumped model HEC-HMS (Hydrologic Engineering Center - Hydrologic Modelling System) several simulations of r noff changes by different basin conditions were carried out. The Blanice River basin in the Šumava Mts. was chosen as an experimental catchment in its closure profile in Podedvory (gauge station, area 209.6 km2). For assessment of land cover changes impact on hydrological regime four scenarios were carried out - 10, 20, 50 and 100-year 1-day probability precipitation in combination with different initial conditions (soil saturation). These scenarios were applied to the stage of the land cover in the year 1992 and 2000 (based on the CORINE Landcover database). The method SCS CN (Soil Conservation Service Curve Number) was applied as the main model technique.
    Electronic ISSN: 0042-790X
    Topics: Architecture, Civil Engineering, Surveying , Geosciences , Natural Sciences in General
    Published by De Gruyter
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-03-01
    Description: This study evaluates MODIS snow cover characteristics for large number of snowmelt runoff events in 145 catchments from 9 countries in Europe. The analysis is based on open discharge daily time series from the Global Runoff Data Center database and daily MODIS snow cover data. Runoff events are identified by a base flow separation approach. The MODIS snow cover characteristics are derived from Terra 500 m observations (MOD10A1 dataset, V005) in the period 2000-2015 and include snow cover area, cloud coverage, regional snowline elevation (RSLE) and its changes during the snowmelt runoff events. The snowmelt events are identified by using estimated RSLE changes during a runoff event. The results indicate that in the majority of catchments there are between 3 and 6 snowmelt runoff events per year. The mean duration between the start and peak of snowmelt runoff events is about 3 days and the proportion of snowmelt events in all runoff events tends to increase with the maximum elevation of catchments. Clouds limit the estimation of snow cover area and RSLE, particularly for dates of runoff peaks. In most of the catchments, the median of cloud coverage during runoff peaks is larger than 80%. The mean minimum RSLE, which represents the conditions at the beginning of snowmelt events, is situated approximately at the mean catchment elevation. It means that snowmelt events do not start only during maximum snow cover conditions, but also after this maximum. The mean RSLE during snowmelt peaks is on average 170 m lower than at the start of the snowmelt events, but there is a large regional variability.
    Electronic ISSN: 0042-790X
    Topics: Architecture, Civil Engineering, Surveying , Geosciences , Natural Sciences in General
    Published by De Gruyter
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2018-03-01
    Description: The knowledge of snowpack distribution at a catchment scale is important to predict the snowmelt runoff. The objective of this study is to select and quantify the most important factors governing the snowpack distribution, with special interest in the role of different canopy structure. We applied a simple distributed sampling design with measurement of snow depth and snow water equivalent (SWE) at a catchment scale. We selected eleven predictors related to character of specific localities (such as elevation, slope orientation and leaf area index) and to winter meteorological conditions (such as irradiance, sum of positive air temperature and sum of new snow depth). The forest canopy structure was described using parameters calculated from hemispherical photographs. A degree-day approach was used to calculate melt factors. Principal component analysis, cluster analysis and Spearman rank correlation were applied to reduce the number of predictors and to analyze measured data. The SWE in forest sites was by 40% lower than in open areas, but this value depended on the canopy structure. The snow ablation in large openings was on average almost two times faster compared to forest sites. The snow ablation in the forest was by 18% faster after forest defoliation (due to the bark beetle). The results from multivariate analyses showed that the leaf area index was a better predictor to explain the SWE distribution during accumulation period, while irradiance was better predictor during snowmelt period. Despite some uncertainty, parameters derived from hemispherical photographs may replace measured incoming solar radiation if this meteorological variable is not available.
    Electronic ISSN: 0042-790X
    Topics: Architecture, Civil Engineering, Surveying , Geosciences , Natural Sciences in General
    Published by De Gruyter
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...