ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1
    Publication Date: 2019-01-23
    Description: Short-Term Electricity Load Forecasting (STELF) through Data Analytics (DA) is an emerging and active research area. Forecasting about electricity load and price provides future trends and patterns of consumption. There is a loss in generation and use of electricity. So, multiple strategies are used to solve the aforementioned problems. Day-ahead electricity price and load forecasting are beneficial for both suppliers and consumers. In this paper, Deep Learning (DL) and data mining techniques are used for electricity load and price forecasting. XG-Boost (XGB), Decision Tree (DT), Recursive Feature Elimination (RFE) and Random Forest (RF) are used for feature selection and feature extraction. Enhanced Convolutional Neural Network (ECNN) and Enhanced Support Vector Regression (ESVR) are used as classifiers. Grid Search (GS) is used for tuning of the parameters of classifiers to increase their performance. The risk of over-fitting is mitigated by adding multiple layers in ECNN. Finally, the proposed models are compared with different benchmark schemes for stability analysis. The performance metrics MSE, RMSE, MAE, and MAPE are used to evaluate the performance of the proposed models. The experimental results show that the proposed models outperformed other benchmark schemes. ECNN performed well with threshold 0.08 for load forecasting. While ESVR performed better with threshold value 0.15 for price forecasting. ECNN achieved almost 2% better accuracy than CNN. Furthermore, ESVR achieved almost 1% better accuracy than the existing scheme (SVR).
    Electronic ISSN: 2079-9292
    Topics: Electrical Engineering, Measurement and Control Technology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-03-17
    Description: Decision fusion is used to fuse classification results and improve the classification accuracy in order to reduce the consumption of energy and bandwidth demand for data transmission. The decentralized classification fusion problem was the reason to use the belief function-based decision fusion approach in Wireless Sensor Networks (WSNs). With the consideration of improving the belief function fusion approach, we have proposed four classification techniques, namely Enhanced K-Nearest Neighbor (EKNN), Enhanced Extreme Learning Machine (EELM), Enhanced Support Vector Machine (ESVM), and Enhanced Recurrent Extreme Learning Machine (ERELM). In addition, WSNs are prone to errors and faults because of their different software, hardware failures, and their deployment in diverse fields. Because of these challenges, efficient fault detection methods must be used to detect faults in a WSN in a timely manner. We have induced four types of faults: offset fault, gain fault, stuck-at fault, and out of bounds fault, and used enhanced classification methods to solve the sensor failure issues. Experimental results show that ERELM gave the first best result for the improvement of the belief function fusion approach. The other three proposed techniques ESVM, EELM, and EKNN provided the second, third, and fourth best results, respectively. The proposed enhanced classifiers are used for fault detection and are evaluated using three performance metrics, i.e., Detection Accuracy (DA), True Positive Rate (TPR), and Error Rate (ER). Simulations show that the proposed methods outperform the existing techniques and give better results for the belief function and fault detection in WSNs.
    Electronic ISSN: 1424-8220
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2020-02-17
    Description: The International Energy Agency has projected that the total energy demand for electricity in sub-Saharan Africa (SSA) is expected to rise by an average of 4% per year up to 2040. It implies that ~620 million people are living without electricity in SSA. Going with the 2030 vision of the United Nations that electricity should be accessible to all, it is important that new technology and methods are provided. In comparison to other nations worldwide, smart grid (SG) is an emerging technology in SSA. SG is an information technology-enhanced power grid, which provides a two-way communication network between energy producers and customers. Also, it includes renewable energy, smart meters, and smart devices that help to manage energy demands and reduce energy generation costs. However, SG is facing inherent difficulties, such as energy theft, lack of trust, security, and privacy issues. Therefore, this paper proposes a blockchain-based decentralized energy system (BDES) to accelerate rural and urban electrification by improving service delivery while minimizing the cost of generation and addressing historical antipathy and cybersecurity risk within SSA. Additionally, energy insufficiency and fixed pricing schemes may raise concerns in SG, such as the imbalance of order. The paper also introduces a blockchain-based energy trading system, which includes price negotiation and incentive mechanisms to address the imbalance of order. Moreover, existing models for energy planning do not consider the effect of fill rate (FR) and service level (SL). A blockchain levelized cost of energy (BLCOE) is proposed as the least-cost solution that measures the impact of energy reliability on generation cost using FR and SL. Simulation results are presented to show the performance of the proposed model and the least-cost option varies with relative energy generation cost of centralized, decentralized and BDES infrastructure. Case studies of Burkina Faso, Cote d’Ivoire, Gambia, Liberia, Mali, and Senegal illustrate situations that are more suitable for BDES. For other SSA countries, BDES can cost-effectively service a large population and regions. Additionally, BLCOE reduces energy costs by approximately 95% for battery and 75% for the solar modules. The future BLCOE varies across SSA on an average of about 0.049 $/kWh as compared to 0.15 $/kWh of an existing system in the literature.
    Electronic ISSN: 1099-4300
    Topics: Chemistry and Pharmacology , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...