ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 41 (1993), S. 95-103 
    ISSN: 0006-3592
    Keywords: enzymatic esterification ; equilibrium ; log P ; organic solvent choice ; lipase ; two-phase system ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: The effect of organic solvents on the equilibrium position of lipase-catalyzed esterification of glycerol and decanoic acid has been investigated. The reaction is carried out in an aqueous-organic two-phase system. In polar solvents, high mole fractions of monoacylglycerol and low mole fractions of triacylglycerol and measured, while in nonpolar solvents, the measured differences in the mole fractions of monodi-, and triacylglycerols are less. There is a good correlation between the ester mole fractions at equilibrium and the log P of the solvent (partition coefficient in n-octanolwater), however, only if the group of tertiary alcohols is excluded. In the plot of the easter mole fractions as a function of the logarithm of hte solubility of water in the organic solvent, the tertiary alcohols can be included; however, in this case other deviations appear.For the prediction of the effect of organic solvents on the ester mole fractions at reaction equilibrium in nondilute reaction systems with a water activity below 1, the program TREP (Two-phase Reaction Equilibrium Prediction) is developed, which is based on the UNIFAC group contribution method. With this model the equilibrium data are essentially predicted from basic thermodynamic data. The required equilibrium constants are estimated from experiments without an organic solvent in the reaction medium. The mole fractions calculated by TREP show the same trends as the experimentally measured mole fractions; however, some variation is observed in the absolute values. These deviations may be due to inaccuracies in the UNIFAC group contribution method. TREP is found to be a correct method to predict within some limits the ester mole fractions at equilibrium for all mixtures of solvents, substrates, and products. The production of monoester can be enhanced in reaction system with a sufficient high concentration of a polar solvent. In experiments with a triglymeto-decanoic acid ratio of 5, almost no di-and triesters can be detected at equilibrium. © 1993 John Wiley & Sons, Inc.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...