ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2018-06-12
    Description: A method of measuring the Mode I fracture toughness of core/facesheet bonds in sandwich Structures is desired, particularly with the widespread use of models that need this data as input. This study examined if a critical strain energy release rate, G(sub IC), can be obtained from the climbing drum peel (CDP) test. The CDP test is relatively simple to perform and does not rely on measuring small crack lengths such as required by the double cantilever beam (DCB) test. Simple energy methods were used to calculate G(sub IC) from CDP test data on composite facesheets bonded to a honeycomb core. Facesheet thicknesses from 2 to 5 plies were tested to examine the upper and lower bounds on facesheet thickness requirements. Results from the study suggest that the CDP test, with certain provisions, can be used to find the GIG value of a core/facesheet bond.
    Keywords: Mechanical Engineering
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-13
    Description: The Composite Cryotank Technologies and Demonstration (CCTD) project substantially matured composite, cryogenic propellant tank technology. The project involved the design, analysis, fabrication, and testing of large-scale (2.4-m-diameter precursor and 5.5-m-diameter) composite cryotanks. Design features included a one-piece wall design that minimized tank weight, a Y-joint that incorporated an engineered material to alleviate stress concentration under combined loading, and a fluted core cylindrical section that inherently allows for venting and purging. The tanks used out-of-autoclave (OoA) cured graphite/epoxy material and processes to enable large (up to 10-m-diameter) cryotank fabrication, and thin-ply prepreg to minimize hydrogen permeation through tank walls. Both tanks were fabricated at Boeing using automated fiber placement on breakdown tooling. A fluted core skirt that efficiently carried axial loads and enabled hydrogen purging was included on the 5.5-m-diameter tank. Ultrasonic inspection was performed, and a structural health monitoring system was installed to identify any impact damage during ground processing. The precursor and 5.5-m-diameter tanks were tested in custom test fixtures at the National Aeronautics and Space Administration Marshall Space Flight Center. The testing, which consisted of a sequence of pressure and thermal cycles using liquid hydrogen, was successfully concluded and obtained valuable structural, thermal, and permeation performance data. This technology can be applied to a variety of aircraft and spacecraft applications that would benefit from 30 to 40% weight savings and substantial cost savings compared to aluminum lithium tanks.
    Keywords: Engineering (General)
    Type: M15-4801 , Composites and Advanced Materials Expo (CAMX); Oct 26, 2015 - Oct 29, 2015; Dallas, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-13
    Description: On the composite cryotank technology development (CCTD) project, the Boeing Company built two cryotanks as a means of advancing technology and manufacturing readiness levels (TRL and MRL) and lowering the risk of fabricating full-scale fuel containment vessels.1 CCTD focused on upper stage extended duration applications where long term storage of propellants is required. The project involved the design, analysis, fabrication, and test of manufacturing demonstration units (MDU), a 2.4 m (precursor) and a 5.5 m composite cryotank. Key design features included one-piece wall construction to minimize overall weight (eliminating the need for a bellyband joint), 3-dimensionally (3D) reinforced y-joint material to alleviate stress concentrations at the tank to skirt interface and a purge-able uted core skirt to carry high axial launch loads. The tanks were made with OoA curing pre-impregnated (prepreg) carbon/epoxy (C/E) slit-tape tow (STT) that contained thin micro-crack resistant plies in the tank wall center to impede permeation. The tanks were fabricated at Boeing's Seattle-based Advanced Development Center (ADC) using RAFP and multipiece break-down tooling. The tooling was designed and built by Janicki Industries (JI) at Sedro Woolley, Washington. Tank assemblage consisted of co-bonded dome covers, one-piece uted core skirts and mechanical fastened cover/sump. Ultrasonic inspection was performed after every cure or bond and a structural health monitoring system (SHMS) was installed to identify potential impact damage events (in-process and/or during transportation). The tanks were low temperature tested at NASA's George C. Marshall Space Flight Center (MSFC) in Huntsville, Alabama. The testing, which consisted of a sequence of ll/drain pressure and thermal cycles using LH2, was successfully concluded in 2012 on the 2.4 m tank and in 2014 on the 5.5 m tank. Structural, thermal, and permeation performance data was obtained. 2 Critical design features and manufacturing advancements, which helped to validate 25% weight and 30% cost reduction projections, were matured. These advancements will help to guide future composite tank integration activities on next generation long duration aircraft and space launch vehicles. Because CCTD addressed innovative design features, heavy lift size scale-up, multipiece captured tooling, new generation automated material placement (AMP) equipment and OoA materials, this chapter should be of interest to educators, students and manufacturers of composite hardware and ight vehicles.
    Keywords: Propellants and Fuels; Spacecraft Propulsion and Power
    Type: M17-6280 , Comprehensive Composite Materials II ; 3; 153-179
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-13
    Description: In 2015, the Composites for Exploration Upper Stage (CEUS) Project established an equivalency test program to reduce the scope of laminate coupon tests within the project. The material selected was IM7/8552-1, a variant of the IM7/8552 prepreg used to populate a National Center for Advanced Materials Performance (NCAMP) database. The CEUS successor program, Composites Technology for Exploration (CTE), kicked off in 2017 with the remaining CEUS prepreg planned for use. The IM7/8552-1 prepreg was recertified through an in-house defined set of pass/fail criteria then evaluated for equivalency to the NCAMP database. Over the course of recertification and equivalency panel fabrication, the time of freezer storage ranged from 19 - 22 months. Panels for recertification and equivalency tests were fiber placed at NASA Marshall Space Flight Center (MSFC) and NASA Langley Research Center (LARC).
    Keywords: Composite Materials
    Type: GRC-E-DAA-TN52622 , Society for the Advancement of Material and Process Engineering (SAMPE 2018) Technical Conference and Exhibition; May 21, 2018 - May 24, 2018; Long Beach, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-08-13
    Description: New automated fiber placement systems at the NASA Langley Research Center and NASA Marshall Space Flight Center provide state-of-art composites capabilities to these organizations. These systems support basic and applied research at Langley, complementing large-scale manufacturing and technology development at Marshall. These systems each consist of a multi-degree of freedom mobility platform including a commercial robot, a commercial tool changer mechanism, a bespoke automated fiber placement end effector, a linear track, and a rotational tool support structure. In addition, new end effectors with advanced capabilities may be either bought or developed with partners in industry and academia to extend the functionality of these systems. These systems will be used to build large and small composite parts in support of the ongoing NASA Composites for Exploration Upper Stage Project later this year.
    Keywords: Cybernetics, Artificial Intelligence and Robotics; Structural Mechanics
    Type: NF1676L-21364 , Composites Materials and Manufacturing Technologies for Space Applications Technical Interchange Meeting; May 06, 2015 - May 07, 2015; New Orleans, LA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-11-01
    Description: In order to take full advantage of the weight savings and performance gains offered by the use of composite materials in large-scale space structures, adhesively bonded joints must be considered. While bonded joint manufacturing at laboratory scale can be straightforward, the same manufacturing processes are not trivial at full scale. Surface preparation becomes particularly challenging (a viable process must yield consistent results over a large application area and be repeatable for multiple application sites), as does the application of heat to cure the doublers and/or bond them to the primary structure (the nature and scale of assembled or partially assembled aerospace structures often necessitates an out-of-oven/out-of-autoclave approach). In this work, bonded joint manufacturing processes are adapted for a full-scale (approximately 30 feet in diameter at the aft end) composite payload adapter at the NASA Marshall Space Flight Center. By iterating across a range of variables, process parameters for adhesively bonded joints on a large-scale composite structure have been developed. Primary findings are presented with respect to overarching bonded joint manufacturing concepts so as to maximize the applicability of this work to similar material systems and structures.
    Keywords: Composite Materials
    Type: M19-7389 , The Composites and Advanced Materials Expo (CAMX) 2019; Sep 23, 2019 - Sep 26, 2019; Anaheim, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Launch Vehicles and Launch Operations; Lunar and Planetary Science and Exploration; Composite Materials
    Type: M17-5661 , Advanced Materials for Transformative Changes to the Defense, Aerospace and Civil Environments; Nov 16, 2016 - Nov 17, 2016; Oxford, MS; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-12
    Description: Notched (open hole) composite laminates were tested in compression. The effect on strength of various sizes of through holes was examined. Results were compared to the average stress criterion model. Additionally, laminated sandwich structures were damaged from low-velocity impact with various impact energy levels and different impactor geometries. The compression strength relative to damage size was compared to the notched compression result strength. Open-hole compression strength was found to provide a reasonable bound on compression after impact.
    Keywords: Composite Materials
    Type: NASA/TP-2011-216460 , M-1309
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-09-07
    Description: No abstract available
    Keywords: Composite Materials; Launch Vehicles and Launch Operations
    Type: M19-7562
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...