ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Physiology 66 (2004), S. 571-599 
    ISSN: 0066-4278
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Medicine , Biology
    Notes: Many cell types in the kidney express adenosine receptors, and adenosine has multiple effects on renal function. Although adenosine is produced within the kidney by several biochemical reactions, recent studies support a novel mechanism for renal adenosine production, the extracellular cAMP-adenosine pathway. This extracellular cAMP-adenosine pathway is initiated by efflux of cAMP from cells following activation of adenylyl cyclase. Extracellular cAMP is then converted to adenosine by the serial actions of ecto-phosphodiesterase and ecto-5'-nucleotidase. When extracellular cAMP is converted to adenosine near the biophase of cAMP production and efflux, this local extracellular cAMP-adenosine pathway permits tight coupling of the site of adenosine production to the site of adenosine receptors. cAMP in renal compartments may also be formed by tissues/organs remote from the kidney. For example, stimulation of hepatic adenylyl cyclase by the pancreatic hormone glucagon increases circulating cAMP, which is filtered at the glomerulus and concentrated in the tubular lumen as water is extracted from the ultrafiltrate. Conversion of hepatic-derived cAMP to adenosine in the kidney completes a pancreatohepatorenal cAMP-adenosine pathway that may serve as an endocrine link between the pancreas, liver, and kidney.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1573-4919
    Keywords: angiotensin II ; SHR ; preglomerular arterioles ; G-proteins ; cAMP ; hypertension
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Abstract Altered regulation of cAMP may contribute to enhanced renal reactivity to angiotensin II (Ang II) in spontaneously hypertensive rats (SHR). Such a phenomenon may occur in renal preglomerular arterioles and may involve changes in expression of GTP-binding regulatory proteins. We have examined the effects of Ang II on steady state levels of Gαi-1,2, Gαi-3 Gαs and Gαq in preglomerular arterioles from young marginally hypertensive SHR and on mean arterial pressure (MAP), renal vascular resistance (RVR) and renal cAMP excretion (UcAMP.V). Young (5-6 week old) SHR and Wistar Kyoto (WKY) rats received Ang II (35 ng/kg/min, s.c.) or vehicle for 7 days via osmotic minipumps. Urine was collected over the last 24 h. On day seven, MAP and renal blood flow were measured in anesthetized rats and RVR was determined. Preglomerular arterioles were isolated by perfusing the kidneys with iron oxide and using a series of mechanical steps coupled with the use of a magnet to retain iron-laden vessels. Membranes were prepared and the expressions of Gαi-1,2, Gαi-3, Gαs and Gαq were evaluated by Western immunoblotting. Baseline MAP (124 ± 6 mmHg) was only marginally (p 〉 0.05) higher in SHR when compared with WKY rats (110 ± 4 mmHg). RBF (3.04 ± 0.16 mL/min) was significantly lower and RVR (41.10 ± 1.37 mmHg.min/mL) was significantly higher in SHR when compared to age-matched WKY rats (4.36 ± 0.30 mL/min and 25.79 ± 1.58 mmHg.min/mL, respectively). Ang II significantly increased MAP in SHR (17 mmHg) but not in WKY rats. These increases in MAP were accompanied by significant increases in RVR in SHR (48% over control) but not in WKY rats. Compared to WKY rats, preglomerular arterioles from SHR exhibited significantly higher basal expression of Gαi-1,2 (11- fold), Gαi-3 (13-fold) and Gαs (3-fold). Chronic infusion of Ang II, however, downregulated the expression of Gαs (by 53%; p 〈 0.05), Gαi-1,2 ( by 72%; p 〈 0.05) and Gαi-3 (by 35%; p 〉 0.05) in SHR preglomerular arterioles but significantly upregulated the expression of these proteins in WKY by 3-, 8- and 15-fold, respectively. Basal levels of Gαq were not different in preglomerular arterioles from the two strains but were downregulated by Ang II in both WKY (74% of basal) and SHR (52% of control). Baseline UcAMP.V was significantly lower in SHR (31.22 ± 6.51 nmol/24 h) compared with WKY rats (65.33 ± 3.60 nmol/24 h). Chronic Ang II infusion significantly increased UcAMP.V in SHR as well as WKY rats. These data clearly demonstrate that expressions of Gi isoforms as well as Gs in renal microvessels are elevated during early stages of hypertension and suggest that the elevated levels of Gi proteins may be directly associated with a blunted adenylyl cyclase-cAMP cascade in the renal microvasculature. Furthermore, Ang II appears to directly downregulate the expression of Gs in young SHR but not in young WKY renal microvessels. Such diversity in its effect on G-protein expression may be important for enhanced renal sensitivity to Ang II in SHR.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 0951-4198
    Keywords: Chemistry ; Analytical Chemistry and Spectroscopy
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Physics
    Notes: The fast-evaporation method of sample preparation has been applied for quantitative analysis using matrix-assisted laser desorption/ionization (MALDI) mass spectrometry. An instrumental protocol focusing on improvement of shot-to-shot repeatability and compensation for signal degradation has been developed for quantification of angiotensin II using the fast-evaporation technique and an internal standard. The fast-evaporation method was compared to the standard method of sample preparation (using a multicomponent matrix) in the quantitative analysis of angiotensin II, and found to be superior in several respects. Improvement in sample homogeneity using the fast-evaporation method enhanced both point-to-point repeatibility and sample-to-sample reproducibility. The relative standard deviations of the analyte/internal standard ratios (point RSD) were decreased by a factor of three compared to those obtained using the multicomponent matrix method. The average point RSD was found to be ca. 5% for the fast-evaporation technique. Two internal standards were evaluated for quantification of angiotensin II. The better one, 1-SAR-8-Ile angiotensin II, yielded a relative standard deviation of the standard curve slope of ca. 2.2% over two orders of magnitude of concentration (45 nM to 3000 nM), an improvement by a factor of two over the standard preparation method. Renal microdialysate samples, spiked with angiotensin II and the internal standard 1-SAR-8-Ile angiotensin II, were also analyzed using the fast-evaporation technique. The detection limit was calculated to be in the high attomole range (675amol). Furthermore, the accuracy for a single determination of angiotensin II concentration in these samples was found to be 13.9% with a relative error of 8.19%.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
  • 5
  • 6
    Publication Date: 2019-11-13
    Description: Acute systemic painful vaso-occlusive crisis (VOC) often serves as an antecedent to acute chest syndrome (ACS), which is a type of acute lung injury and the leading cause of mortality among sickle cell disease (SCD) patients. Thrombocytopenia secondary to pulmonary thrombosis is major risk factor for ACS, however, only 20% of ACS patients are diagnosed with pulmonary thrombosis as an underlying cause of ACS. Although clinical evidence supports the presence of prothrombotic state in subset of SCD patients, the molecular, cellular and genetic mechanisms that selectively render subset of SCD patients at either higher or lower risk of developing pulmonary thrombosis remains elusive. Adenosine diphosphate (ADP) released from lysed erythrocytes can activate platelets by stimulating their purinergic P2Y1 and P2Y12 receptors, however, P2Y12 receptor antagonists have not shown any benefit in clinical trials, justifying the need for better understanding of purinergic signaling in SCD. Here, we use intravital lung microscopy in transgenic humanized SCD mice to show that intravenous administration of ADP triggered pulmonary thrombosis in control mice but failed to trigger pulmonary thrombosis in SCD mice. In contrast, collagen evoked pulmonary thrombosis identically in both control and SCD mice. Identical to intravital findings, IV ADP administration also evoked transient thrombocytopenia in control but not SCD mice, while, IV collagen led to comparable drop in platelet count in both SCD and control mice. ADP is metabolized by the ecto-nucleoside-tri-phosphate-diphosphohydrolase-1 (E-NTPDase1) CD39. IV administration of fluorescent analogue of ADP, N⁶- ethenoadenosine- 5'- O- diphosphate (ε-ADP) followed by invivo microdialysis and HPLC analysis revealed impaired ε-ADP degradation in SCD mice, suggestive of decreased CD39 activity. Our current findings suggest that loss of CD39 activity in SCD possibly prevents ADP-mediated pulmonary thrombosis. Currently, experiments are underway to identify pathways contributing to loss of CD39 activity in SCD, how that affects purinergic signaling and whether selective activation vs deactivation of this pathway is responsible for risk of pulmonary thrombosis in only 20% of ACS patients. Disclosures Gladwin: Globin Solutions, Inc: Patents & Royalties: Provisional patents for the use of recombinant neuroglobin and heme-based molecules as antidotes for CO poisoning; United Therapeutics: Patents & Royalties: Co-inventor on an NIH government patent for the use of nitrite salts in cardiovascular diseases ; Bayer Pharmaceuticals: Other: Co-investigator.
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2011-11-18
    Description: Abstract 4255 We have previously shown that the frequency and suppressor function of regulatory T cells (Treg) is increased in newly-diagnosed patients with acute myeloid leukemia (AML). Here, we show that CD4+CD39+ ATP-hydrolyzing T cells are involved in the production of immunosuppressive adenosine and that this mechanism of suppression characterizes Treg present in the blood and bone marrow of AML patients. Peripheral blood and bone marrow samples were obtained from AML patients prior to any treatment (n=20) and healthy controls (NC, n=20). The frequency and phenotype as well as cytokine profiles of CD4+CD39+ T cells were determined using multicolor flow cytometry, real-time PCR and western blots. Adenosine production was measured by mass spectrometry. Co-cultures of CD4+CD39+ Treg with conventional T cells were tested for suppression of proliferation. In NC and patients with AML, CD4+CD39+ Treg contained two subsets of ATP-hydrolyzing T cells in equal proportions (Fig.1): FOXP3+CD25+ and FOXP3negCD25neg.Both subsets were increased in frequency (p 〈 0.04) in AML relative to NC (Fig.2). In the presence of other immune cells or exosomes positive for CD73 (hydrolyzes AMP to adenosine) both subsets produced immunosuppressive adenosine. In co-cultures, CD4+CD39+FOXP3negCD25neg T cells converted to FOXP3+CD25+ T cells. Our data suggest that Treg with the ability to produce adenosine are a major subset of suppressor cells in the blood and bone marrow of AML patients. Co-culture experiments indicate that the ability of these cells to suppress immune responses is regulated at the level of FOXP3 and CD25 expression by factors present in their microenvironment. Disclosures: No relevant conflicts of interest to declare.
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2013-07-04
    Description: Key PointsProducts of ATP hydrolysis, 5′AMP, and adenosine orchestrate the dual regulatory activity of B cells. B cells emerge as a key regulatory component of T cell–B cell interactions, which are under environmental control.
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-12-23
    Description: Pulmonary arterial hypertension (PAH) is a debilitating and progressive disease that predominantly develops in women. Over the past 15 years, cumulating evidence has pointed toward dysregulated metabolism of sex hormones in animal models and patients with PAH. 17β-estradiol (E2) is metabolized at positions C2, C4, and C16, which leads to the formation of metabolites with different biological/estrogenic activity. Since the first report that 2-methoxyestradiol, a major non-estrogenic metabolite of E2, attenuates the development and progression of experimental pulmonary hypertension (PH), it has become increasingly clear that E2, E2 precursors, and E2 metabolites exhibit both protective and detrimental effects in PH. Furthermore, both experimental and clinical data suggest that E2 has divergent effects in the pulmonary vasculature versus right ventricle (estrogen paradox in PAH). The estrogen paradox is of significant clinical relevance for understanding the development, progression, and prognosis of PAH. This review updates experimental and clinical findings and provides insights into: (1) the potential impacts that pathways of estradiol metabolism (EMet) may have in PAH; (2) the beneficial and adverse effects of estrogens and their precursors/metabolites in experimental PH and human PAH; (3) the co-morbidities and pathological conditions that may alter EMet and influence the development/progression of PAH; (4) the relevance of the intracrinology of sex hormones to vascular remodeling in PAH; and (5) the advantages/disadvantages of different approaches to modulate EMet in PAH. Finally, we propose the three-tier-estrogen effects in PAH concept, which may offer reconciliation of the opposing effects of E2 in PAH and may provide a better understanding of the complex mechanisms by which EMet affects the pulmonary circulation–right ventricular interaction in PAH.
    Print ISSN: 1661-6596
    Electronic ISSN: 1422-0067
    Topics: Chemistry and Pharmacology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...