ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2008-12-19
    Description: Palmitoylation regulates diverse aspects of neuronal protein trafficking and function. Here a global characterization of rat neural palmitoyl-proteomes identifies most of the known neural palmitoyl proteins-68 in total, plus more than 200 new palmitoyl-protein candidates, with further testing confirming palmitoylation for 21 of these candidates. The new palmitoyl proteins include neurotransmitter receptors, transporters, adhesion molecules, scaffolding proteins, as well as SNAREs and other vesicular trafficking proteins. Of particular interest is the finding of palmitoylation for a brain-specific Cdc42 splice variant. The palmitoylated Cdc42 isoform (Cdc42-palm) differs from the canonical, prenylated form (Cdc42-prenyl), both with regard to localization and function: Cdc42-palm concentrates in dendritic spines and has a special role in inducing these post-synaptic structures. Furthermore, assessing palmitoylation dynamics in drug-induced activity models identifies rapidly induced changes for Cdc42 as well as for other synaptic palmitoyl proteins, suggesting that palmitoylation may participate broadly in the activity-driven changes that shape synapse morphology and function.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2610860/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2610860/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kang, Rujun -- Wan, Junmei -- Arstikaitis, Pamela -- Takahashi, Hideto -- Huang, Kun -- Bailey, Aaron O -- Thompson, James X -- Roth, Amy F -- Drisdel, Renaldo C -- Mastro, Ryan -- Green, William N -- Yates, John R 3rd -- Davis, Nicholas G -- El-Husseini, Alaa -- DA019695/DA/NIDA NIH HHS/ -- DA13602/DA/NIDA NIH HHS/ -- GM65525/GM/NIGMS NIH HHS/ -- NS043782/NS/NINDS NIH HHS/ -- P01 DA019695/DA/NIDA NIH HHS/ -- P01 DA019695-01A20001/DA/NIDA NIH HHS/ -- P01 DA019695-020001/DA/NIDA NIH HHS/ -- R01 DA013602/DA/NIDA NIH HHS/ -- R01 DA013602-01/DA/NIDA NIH HHS/ -- R01 DA013602-02/DA/NIDA NIH HHS/ -- R01 DA013602-02S1/DA/NIDA NIH HHS/ -- R01 DA013602-02S2/DA/NIDA NIH HHS/ -- R01 DA013602-03/DA/NIDA NIH HHS/ -- R01 DA013602-04/DA/NIDA NIH HHS/ -- R01 DA013602-05/DA/NIDA NIH HHS/ -- R01 NS032693/NS/NINDS NIH HHS/ -- R01 NS032693-08/NS/NINDS NIH HHS/ -- R01 NS043782/NS/NINDS NIH HHS/ -- R01 NS043782-01A2/NS/NINDS NIH HHS/ -- R01 NS043782-02/NS/NINDS NIH HHS/ -- R01 NS043782-03/NS/NINDS NIH HHS/ -- R01 NS043782-04/NS/NINDS NIH HHS/ -- R01 NS043782-05/NS/NINDS NIH HHS/ -- R56 NS043782/NS/NINDS NIH HHS/ -- R56 NS043782-06/NS/NINDS NIH HHS/ -- RR011823/RR/NCRR NIH HHS/ -- England -- Nature. 2008 Dec 18;456(7224):904-9. doi: 10.1038/nature07605.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Psychiatry, Brain Research Centre, University of British Columbia, Vancouver V6T 1Z3, British Columbia, Canada. rkang@interchange.ubc.ca〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19092927" target="_blank"〉PubMed〈/a〉
    Keywords: Alternative Splicing/genetics ; Animals ; Cells, Cultured ; Cerebral Cortex/cytology/embryology ; Dendrites/metabolism ; *Lipoylation ; Models, Neurological ; Neurons/*metabolism ; Organ Specificity ; Proteome/metabolism ; *Proteomics ; Rats ; Synapses/*metabolism ; cdc42 GTP-Binding Protein/genetics/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2016-11-04
    Description: China has experienced enormous changes in land use in recent decades, which are largely driven by its unparalleled economic development. We analyze changes in vegetation and soil carbon storage between 1990 and 2010 resulting from combinations of land-use category conversion and management. Results demonstrate a major decline in grasslands (–6.85%; 20.83 x 10 6 ha) and large increases in urban areas (+43.73%; 6.87 x 10 6 ha), farmlands (+0.84%; 1.48 x 10 6 ha), and forests (+0.67%; 1.52 x 10 6 ha). The total soil organic carbon pool has been reduced by approximately 11.5 Tg of carbon (TgC) year –1 , whereas 13.2 TgC year –1 has accumulated in the biomass carbon pool because of land-use category change. Large carbon losses (approximately 101.8 TgC year –1 ) have resulted from land management failures, including forest fires and insect pests. Overall land-use change and land management have contributed about 1.45 Pg of carbon to the total carbon released from 1990 to 2010. Our results highlight the importance of improving land-use management, especially in view of the recently proposed expansion of urban areas in China.
    Electronic ISSN: 2375-2548
    Topics: Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...