ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2008-11-21
    Description: Four-way DNA intermediates, also known as Holliday junctions, are formed during homologous recombination and DNA repair, and their resolution is necessary for proper chromosome segregation. Here we identify nucleases from Saccharomyces cerevisiae and human cells that promote Holliday junction resolution, in a manner analogous to that shown by the Escherichia coli Holliday junction resolvase RuvC. The human Holliday junction resolvase, GEN1, and its yeast orthologue, Yen1, were independently identified using two distinct experimental approaches: GEN1 was identified by mass spectrometry following extensive fractionation of HeLa cell-free extracts, whereas Yen1 was detected by screening a yeast gene fusion library for nucleases capable of Holliday junction resolution. The eukaryotic Holliday junction resolvases represent a new subclass of the Rad2/XPG family of nucleases. Recombinant GEN1 and Yen1 resolve Holliday junctions by the introduction of symmetrically related cuts across the junction point, to produce nicked duplex products in which the nicks can be readily ligated.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ip, Stephen C Y -- Rass, Ulrich -- Blanco, Miguel G -- Flynn, Helen R -- Skehel, J Mark -- West, Stephen C -- Cancer Research UK/United Kingdom -- England -- Nature. 2008 Nov 20;456(7220):357-61. doi: 10.1038/nature07470.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Genetic Recombination Laboratory, Cancer Research UK, London Research Institute, Clare Hall Laboratories, South Mimms, Herts EN6 3LD, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19020614" target="_blank"〉PubMed〈/a〉
    Keywords: DNA/chemistry/metabolism ; DNA Repair ; HeLa Cells ; Holliday Junction Resolvases/chemistry/genetics/*isolation & ; purification/*metabolism ; Humans ; Recombination, Genetic ; Saccharomyces cerevisiae/*enzymology/genetics ; Saccharomyces cerevisiae Proteins/genetics/*metabolism ; Substrate Specificity
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2013-09-06
    Description: Repair of interstrand crosslinks (ICLs) requires the coordinated action of the intra-S-phase checkpoint and the Fanconi anaemia pathway, which promote ICL incision, translesion synthesis and homologous recombination (reviewed in refs 1, 2). Previous studies have implicated the 3'-5' superfamily 2 helicase HELQ in ICL repair in Drosophila melanogaster (MUS301 (ref. 3)) and Caenorhabditis elegans (HELQ-1 (ref. 4)). Although in vitro analysis suggests that HELQ preferentially unwinds synthetic replication fork substrates with 3' single-stranded DNA overhangs and also disrupts protein-DNA interactions while translocating along DNA, little is known regarding its functions in mammalian organisms. Here we report that HELQ helicase-deficient mice exhibit subfertility, germ cell attrition, ICL sensitivity and tumour predisposition, with Helq heterozygous mice exhibiting a similar, albeit less severe, phenotype than the null, indicative of haploinsufficiency. We establish that HELQ interacts directly with the RAD51 paralogue complex BCDX2 and functions in parallel to the Fanconi anaemia pathway to promote efficient homologous recombination at damaged replication forks. Thus, our results reveal a critical role for HELQ in replication-coupled DNA repair, germ cell maintenance and tumour suppression in mammals.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3836231/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3836231/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Adelman, Carrie A -- Lolo, Rafal L -- Birkbak, Nicolai J -- Murina, Olga -- Matsuzaki, Kenichiro -- Horejsi, Zuzana -- Parmar, Kalindi -- Borel, Valerie -- Skehel, J Mark -- Stamp, Gordon -- D'Andrea, Alan -- Sartori, Alessandro A -- Swanton, Charles -- Boulton, Simon J -- A3549/Cancer Research UK/United Kingdom -- R01 DK043889/DK/NIDDK NIH HHS/ -- R01-DK43889/DK/NIDDK NIH HHS/ -- Cancer Research UK/United Kingdom -- England -- Nature. 2013 Oct 17;502(7471):381-4. doi: 10.1038/nature12565. Epub 2013 Sep 4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉DNA Damage Response Laboratory, London Research Institute, Cancer Research UK, Clare Hall, South Mimms EN6 3LD, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24005329" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Carcinogenesis/genetics/pathology ; DNA Damage/genetics ; DNA Helicases/deficiency/genetics/*metabolism ; *DNA Repair/genetics ; DNA Replication/genetics ; Fanconi Anemia/metabolism ; Fanconi Anemia Complementation Group D2 Protein/deficiency/genetics/metabolism ; Female ; Gene Deletion ; Germ Cells/cytology/*metabolism/*pathology ; Male ; Mice ; Multiprotein Complexes/metabolism ; Ovarian Neoplasms/genetics/metabolism/pathology ; Ovary/metabolism/pathology ; Rad51 Recombinase/*metabolism ; Recombinational DNA Repair/genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2012-06-09
    Description: The function of many DNA metabolism proteins depends on their ability to coordinate an iron-sulfur (Fe-S) cluster. Biogenesis of Fe-S proteins is a multistep process that takes place in mitochondria and the cytoplasm, but how it is linked to nuclear Fe-S proteins is not known. Here, we demonstrate that MMS19 forms a complex with the cytoplasmic Fe-S assembly (CIA) proteins CIAO1, IOP1, and MIP18. Cytoplasmic MMS19 also binds to multiple nuclear Fe-S proteins involved in DNA metabolism. In the absence of MMS19, a failure to transfer Fe-S clusters to target proteins is associated with Fe-S protein instability and preimplantation death of mice in which Mms19 has been knocked out. We propose that MMS19 functions as a platform to facilitate Fe-S cluster transfer to proteins critical for DNA replication and repair.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gari, Kerstin -- Leon Ortiz, Ana Maria -- Borel, Valerie -- Flynn, Helen -- Skehel, J Mark -- Boulton, Simon J -- Cancer Research UK/United Kingdom -- New York, N.Y. -- Science. 2012 Jul 13;337(6091):243-5. doi: 10.1126/science.1219664. Epub 2012 Jun 7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉DNA Damage Response Laboratory, London Research Institute, Cancer Research UK, Clare Hall, South Mimms EN6 3LD, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22678361" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Carrier Proteins/metabolism ; Cytoplasm/*metabolism ; DNA/*metabolism ; DNA Repair ; DNA Replication ; Humans ; Hydrogenase/metabolism ; Iron-Sulfur Proteins/*metabolism ; Metallochaperones/metabolism ; Mice ; Mice, Knockout ; Molecular Sequence Data ; Nuclear Proteins/metabolism ; Protein Stability ; Saccharomyces cerevisiae/genetics/metabolism ; Transcription Factors/genetics/*metabolism ; Xeroderma Pigmentosum Group D Protein/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2015-01-24
    Description: PrimPol is a recently identified polymerase involved in eukaryotic DNA damage tolerance, employed in both re-priming and translesion synthesis mechanisms to bypass nuclear and mitochondrial DNA lesions. In this report, we investigate how the enzymatic activities of human PrimPol are regulated. We show that, unlike other TLS polymerases, PrimPol is not stimulated by PCNA and does not interact with it in vivo . We identify that PrimPol interacts with both of the major single-strand binding proteins, RPA and mtSSB in vivo. Using NMR spectroscopy, we characterize the domains responsible for the PrimPol-RPA interaction, revealing that PrimPol binds directly to the N-terminal domain of RPA70. In contrast to the established role of SSBs in stimulating replicative polymerases, we find that SSBs significantly limit the primase and polymerase activities of PrimPol. To identify the requirement for this regulation, we employed two forward mutation assays to characterize PrimPol's replication fidelity. We find that PrimPol is a mutagenic polymerase, with a unique error specificity that is highly biased towards insertion-deletion errors. Given the error-prone disposition of PrimPol, we propose a mechanism whereby SSBs greatly restrict the contribution of this enzyme to DNA replication at stalled forks, thus reducing the mutagenic potential of PrimPol during genome replication.
    Print ISSN: 0305-1048
    Electronic ISSN: 1362-4962
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2014-11-12
    Description: The increased cap-independent translation of anti-apoptotic proteins is involved in the development of drug resistance in lung cancer but signalling events regulating this are poorly understood. Fibroblast growth factor 2 (FGF-2) signalling-induced S6 kinase 2 (S6K2) activation is necessary, but the downstream mediator(s) coupling this kinase to the translational response is unknown. Here, we show that S6K2 binds and phosphorylates hnRNPA1 on novel Ser4/6 sites, increasing its association with BCL-XL and XIAP mRNAs to promote their nuclear export. In the cytoplasm, phosphoS4/6-hnRNPA1 dissociates from these mRNAs de-repressing their IRES-mediated translation. This correlates with the phosphorylation-dependent association of hnRNPA1 with 14-3-3 leading to hnRNPA1 sumoylation on K183 and its re-import into the nucleus. A non-phosphorylatible, S4/6A mutant prevented these processes, hindering the pro-survival activity of FGF-2/S6K2 signalling. Interestingly, immunohistochemical staining of lung and breast cancer tissue samples demonstrated that increased S6K2 expression correlates with decreased cytoplasmic hnRNPA1 and increased BCL-XL expression. In short, phosphorylation on novel N-term sites of hnRNPA1 promotes translation of anti-apoptotic proteins and is indispensable for the pro-survival effects of FGF-2.
    Print ISSN: 0305-1048
    Electronic ISSN: 1362-4962
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2016-10-14
    Description: Cyclin-dependent kinases (CDKs) coordinate cell cycle checkpoints with DNA repair mechanisms that together maintain genome stability. However, the myriad mechanisms that can give rise to genome instability are still to be fully elucidated. Here, we identify CDK18 (PCTAIRE 3) as a novel regulator of genome stability, and show that depletion of CDK18 causes an increase in endogenous DNA damage and chromosomal abnormalities. CDK18-depleted cells accumulate in early S-phase, exhibiting retarded replication fork kinetics and reduced ATR kinase signaling in response to replication stress. Mechanistically, CDK18 interacts with RAD9, RAD17 and TOPBP1, and CDK18-deficiency results in a decrease in both RAD17 and RAD9 chromatin retention in response to replication stress. Importantly, we demonstrate that these phenotypes are rescued by exogenous CDK18 in a kinase-dependent manner. Collectively, these data reveal a rate-limiting role for CDK18 in replication stress signalling and establish it as a novel regulator of genome integrity.
    Print ISSN: 0305-1048
    Electronic ISSN: 1362-4962
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...