ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 1997-08-15
    Description: Catalytic protein subunits of telomerase from the ciliate Euplotes aediculatus and the yeast Saccharomyces cerevisiae contain reverse transcriptase motifs. Here the homologous genes from the fission yeast Schizosaccharomyces pombe and human are identified. Disruption of the S. pombe gene resulted in telomere shortening and senescence, and expression of mRNA from the human gene correlated with telomerase activity in cell lines. Sequence comparisons placed the telomerase proteins in the reverse transcriptase family but revealed hallmarks that distinguish them from retroviral and retrotransposon relatives. Thus, the proposed telomerase catalytic subunits are phylogenetically conserved and represent a deep branch in the evolution of reverse transcriptases.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Nakamura, T M -- Morin, G B -- Chapman, K B -- Weinrich, S L -- Andrews, W H -- Lingner, J -- Harley, C B -- Cech, T R -- GM28039/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1997 Aug 15;277(5328):955-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, Department of Chemistry and Biochemistry, University of Colorado, Boulder, CO 80309-0215, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9252327" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Binding Sites ; Catalysis ; Cell Line ; DNA-Binding Proteins ; Evolution, Molecular ; Genes, Fungal ; Humans ; Introns ; Molecular Sequence Data ; Phylogeny ; Proteins/*chemistry/genetics/metabolism ; *Rna ; RNA, Messenger/genetics/metabolism ; RNA-Directed DNA Polymerase/chemistry ; Retroelements ; Schizosaccharomyces/*enzymology/genetics/growth & development ; Schizosaccharomyces pombe Proteins ; Sequence Alignment ; Telomerase/*chemistry/genetics/metabolism ; Telomere/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2007-10-06
    Description: Telomeres, the DNA-protein complexes located at the end of linear eukaryotic chromosomes, are essential for chromosome stability. Until now, telomeres have been considered to be transcriptionally silent. We demonstrate that mammalian telomeres are transcribed into telomeric repeat-containing RNA (TERRA). TERRA molecules are heterogeneous in length, are transcribed from several subtelomeric loci toward chromosome ends, and localize to telomeres. We also show that suppressors with morphogenetic defects in genitalia (SMG) proteins, which are effectors of nonsense-mediated messenger RNA decay, are enriched at telomeres in vivo, negatively regulate TERRA association with chromatin, and protect chromosome ends from telomere loss. Thus, telomeres are actively transcribed into TERRA, and SMG factors represent a molecular link between TERRA regulation and the maintenance of telomere integrity.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Azzalin, Claus M -- Reichenbach, Patrick -- Khoriauli, Lela -- Giulotto, Elena -- Lingner, Joachim -- New York, N.Y. -- Science. 2007 Nov 2;318(5851):798-801. Epub 2007 Oct 4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Swiss Institute for Experimental Cancer Research (ISREC), CH-1066 Epalinges, Switzerland.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17916692" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Blotting, Northern ; Cells, Cultured ; Chromosomes, Human ; Chromosomes, Mammalian ; HeLa Cells ; Humans ; In Situ Hybridization, Fluorescence ; Mice ; Molecular Sequence Data ; Proteins/metabolism ; RNA/*genetics ; Repetitive Sequences, Nucleic Acid ; Telomerase/physiology ; Telomere/*genetics ; Transcription, Genetic ; Tumor Cells, Cultured
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2008-04-05
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Chang, Michael -- Lingner, Joachim -- New York, N.Y. -- Science. 2008 Apr 4;320(5872):60-1. doi: 10.1126/science.1155132.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Ecole Polytechnique Federale de Lausanne, Swiss Institute for Experimental Cancer Research (ISREC), CH-1066 Epalinges, Switzerland. michael.chang@epfl.ch〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18388281" target="_blank"〉PubMed〈/a〉
    Keywords: Adaptor Proteins, Signal Transducing/metabolism ; Animals ; DNA-Activated Protein Kinase/metabolism ; Humans ; Mice ; Nuclear Proteins/metabolism ; Phosphatidylinositol 3-Kinases/metabolism ; Protein Kinases/metabolism ; Protein-Serine-Threonine Kinases/metabolism ; *Signal Transduction ; TOR Serine-Threonine Kinases ; Telomere-Binding Proteins/genetics/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2004-04-06
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Azzalin, Claus M -- Lingner, Joachim -- New York, N.Y. -- Science. 2004 Apr 2;304(5667):60-2.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Swiss Institute for Experimental Cancer Research (ISREC), CH-1066 Epalinges, Lausanne, Switzerland.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15064409" target="_blank"〉PubMed〈/a〉
    Keywords: *Anaphase ; Cell Cycle ; Chromatids/*physiology ; DNA Repair ; DNA Replication ; *Mitosis ; RNA, Small Interfering/metabolism ; Recombination, Genetic ; Tankyrases/genetics/*metabolism ; Telomere/*physiology ; Telomeric Repeat Binding Protein 1/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2012-07-06
    Description: The lengths of human telomeres, which protect chromosome ends from degradation and end fusions, are crucial determinants of cell lifespan. During embryogenesis and in cancer, the telomerase enzyme counteracts telomeric DNA shortening. As shown in cancer cells, human telomerase binds the shelterin component TPP1 at telomeres during the S phase of the cell cycle, and adds ~60 nucleotides in a single round of extension, after which telomerase is turned off by unknown mechanisms. Here we show that the human CST (CTC1, STN1 and TEN1) complex, previously implicated in telomere protection and DNA metabolism, inhibits telomerase activity through primer sequestration and physical interaction with the protection of telomeres 1 (POT1)-TPP1 telomerase processivity factor. CST competes with POT1-TPP1 for telomeric DNA, and CST-telomeric-DNA binding increases during late S/G2 phase only on telomerase action, coinciding with telomerase shut-off. Depletion of CST allows excessive telomerase activity, promoting telomere elongation. We propose that through binding of the telomerase-extended telomere, CST limits telomerase action at individual telomeres to approximately one binding and extension event per cell cycle. Our findings define the sequence of events that occur to first enable and then terminate telomerase-mediated telomere elongation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Chen, Liuh-Yow -- Redon, Sophie -- Lingner, Joachim -- 232812/European Research Council/International -- England -- Nature. 2012 Aug 23;488(7412):540-4. doi: 10.1038/nature11269.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Swiss Institute for Experimental Cancer Research (ISREC), Ecole Polytechnique Federale de Lausanne, Station 19, 1015 Lausanne, Switzerland.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22763445" target="_blank"〉PubMed〈/a〉
    Keywords: Aminopeptidases/metabolism ; Base Sequence ; Cell Line, Tumor ; DNA/genetics/metabolism ; Dipeptidyl-Peptidases and Tripeptidyl-Peptidases/metabolism ; Electrophoretic Mobility Shift Assay ; Enzyme Assays ; G2 Phase ; HEK293 Cells ; Humans ; Longevity ; Multiprotein Complexes/chemistry/genetics/*metabolism ; Protein Binding ; S Phase ; Serine Proteases/metabolism ; Telomerase/*antagonists & inhibitors/metabolism ; Telomere/genetics/metabolism ; Telomere-Binding Proteins/genetics/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1995-09-15
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lingner, J -- Cooper, J P -- Cech, T R -- New York, N.Y. -- Science. 1995 Sep 15;269(5230):1533-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, Department of Chemistry and Biochemistry, University of Colorado, Boulder 80309, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7545310" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Chromosomes/*metabolism ; DNA Nucleotidylexotransferase/*metabolism ; *DNA Replication ; DNA-Directed DNA Polymerase/metabolism ; RNA/metabolism ; Telomere/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 1997-04-25
    Description: Telomerase is a ribonucleoprotein enzyme essential for the replication of chromosome termini in most eukaryotes. Telomerase RNA components have been identified from many organisms, but no protein component has been demonstrated to catalyze telomeric DNA extension. Telomerase was purified from Euplotes aediculatus, a ciliated protozoan, and one of its proteins was partially sequenced by nanoelectrospray tandem mass spectrometry. Cloning and sequence analysis of the corresponding gene revealed that this 123-kilodalton protein (p123) contains reverse transcriptase motifs. A yeast (Saccharomyces cerevisiae) homolog was found and subsequently identified as EST2 (ever shorter telomeres), deletion of which had independently been shown to produce telomere defects. Introduction of single amino acid substitutions within the reverse transcriptase motifs of Est2 protein led to telomere shortening and senescence in yeast, indicating that these motifs are important for catalysis of telomere elongation in vivo. In vitro telomeric DNA extension occurred with extracts from wild-type yeast but not from est2 mutants or mutants deficient in telomerase RNA. Thus, the reverse transcriptase protein fold, previously known to be involved in retroviral replication and retrotransposition, is essential for normal chromosome telomere replication in diverse eukaryotes.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lingner, J -- Hughes, T R -- Shevchenko, A -- Mann, M -- Lundblad, V -- Cech, T R -- AG11728/AG/NIA NIH HHS/ -- New York, N.Y. -- Science. 1997 Apr 25;276(5312):561-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, Department of Chemistry and Biochemistry, University of Colorado, Boulder, CO 80309-0215, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9110970" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Binding Sites ; Catalysis ; Chromosomes/metabolism ; DNA, Fungal/metabolism ; DNA-Binding Proteins ; Euplotes/*enzymology ; Evolution, Molecular ; Fungal Proteins/chemistry/metabolism ; Genes, Fungal ; Genes, Protozoan ; Molecular Sequence Data ; Protein Conformation ; *Rna ; RNA, Fungal/metabolism ; RNA, Protozoan/metabolism ; RNA-Directed DNA Polymerase/*chemistry/metabolism ; Saccharomyces cerevisiae/enzymology ; Saccharomyces cerevisiae Proteins ; Sequence Alignment ; Telomerase/*chemistry/genetics/isolation & purification/metabolism ; Telomere/metabolism ; Templates, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Amsterdam : Elsevier
    Cell Biology International Reports 14 (1990), S. 41 
    ISSN: 0309-1651
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Biology
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 1996-10-01
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...