ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2015-02-25
    Description: Long-term in vivo expression of a broad and potent entry inhibitor could circumvent the need for a conventional vaccine for HIV-1. Adeno-associated virus (AAV) vectors can stably express HIV-1 broadly neutralizing antibodies (bNAbs). However, even the best bNAbs neutralize 10-50% of HIV-1 isolates inefficiently (80% inhibitory concentration (IC80) 〉 5 mug ml(-1)), suggesting that high concentrations of these antibodies would be necessary to achieve general protection. Here we show that eCD4-Ig, a fusion of CD4-Ig with a small CCR5-mimetic sulfopeptide, binds avidly and cooperatively to the HIV-1 envelope glycoprotein (Env) and is more potent than the best bNAbs (geometric mean half-maximum inhibitory concentration (IC50) 〈 0.05 mug ml(-1)). Because eCD4-Ig binds only conserved regions of Env, it is also much broader than any bNAb. For example, eCD4-Ig efficiently neutralized 100% of a diverse panel of neutralization-resistant HIV-1, HIV-2 and simian immunodeficiency virus isolates, including a comprehensive set of isolates resistant to the CD4-binding site bNAbs VRC01, NIH45-46 and 3BNC117. Rhesus macaques inoculated with an AAV vector stably expressed 17-77 mug ml(-1) of fully functional rhesus eCD4-Ig for more than 40 weeks, and these macaques were protected from several infectious challenges with SHIV-AD8. Rhesus eCD4-Ig was also markedly less immunogenic than rhesus forms of four well-characterized bNAbs. Our data suggest that AAV-delivered eCD4-Ig can function like an effective HIV-1 vaccine.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4352131/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4352131/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gardner, Matthew R -- Kattenhorn, Lisa M -- Kondur, Hema R -- von Schaewen, Markus -- Dorfman, Tatyana -- Chiang, Jessica J -- Haworth, Kevin G -- Decker, Julie M -- Alpert, Michael D -- Bailey, Charles C -- Neale, Ernest S Jr -- Fellinger, Christoph H -- Joshi, Vinita R -- Fuchs, Sebastian P -- Martinez-Navio, Jose M -- Quinlan, Brian D -- Yao, Annie Y -- Mouquet, Hugo -- Gorman, Jason -- Zhang, Baoshan -- Poignard, Pascal -- Nussenzweig, Michel C -- Burton, Dennis R -- Kwong, Peter D -- Piatak, Michael Jr -- Lifson, Jeffrey D -- Gao, Guangping -- Desrosiers, Ronald C -- Evans, David T -- Hahn, Beatrice H -- Ploss, Alexander -- Cannon, Paula M -- Seaman, Michael S -- Farzan, Michael -- HHSN261200800001E/PHS HHS/ -- P01 AI100263/AI/NIAID NIH HHS/ -- P30 AI045008/AI/NIAID NIH HHS/ -- R01 AI058715/AI/NIAID NIH HHS/ -- R01 AI080324/AI/NIAID NIH HHS/ -- R01 AI091476/AI/NIAID NIH HHS/ -- R01 AI095098/AI/NIAID NIH HHS/ -- R01 AI098485/AI/NIAID NIH HHS/ -- RR000168/RR/NCRR NIH HHS/ -- UM1 AI100663/AI/NIAID NIH HHS/ -- Howard Hughes Medical Institute/ -- Intramural NIH HHS/ -- England -- Nature. 2015 Mar 5;519(7541):87-91. doi: 10.1038/nature14264. Epub 2015 Feb 18.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Infectious Diseases, The Scripps Research Institute, Jupiter, Florida 33458, USA. ; Department of Comparative Pathology, Harvard Medical School, New England Primate Research Center, Southborough, Massachusetts 01772, USA. ; Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, USA. ; Department of Molecular Microbiology and Immunology, Keck School of Medicine of the University of Southern California, Los Angeles, California 90033, USA. ; Departments of Medicine and Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA. ; 1] Department of Comparative Pathology, Harvard Medical School, New England Primate Research Center, Southborough, Massachusetts 01772, USA [2] Immunathon Inc., Cambridge, Massachusetts 02141, USA. ; Department of Pathology, University of Miami Miller School of Medicine, Miami, Florida 33136, USA. ; 1] Laboratory of Molecular Immunology, The Rockefeller University, New York, New York 10065, USA [2] Department of Immunology, Institut Pasteur, Paris, 75015, France. ; Vaccine Research Center, National Institutes of Health, Bethesda, Maryland 20892, USA. ; Department of Immunology and Microbial Science, IAVI Neutralizing Antibody Center, and Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, California 92037, USA. ; 1] Laboratory of Molecular Immunology, The Rockefeller University, New York, New York 10065, USA [2] Howard Hughes Medical Institute, New York, New York 10065, USA. ; 1] Department of Immunology and Microbial Science, IAVI Neutralizing Antibody Center, and Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, California 92037, USA [2] Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts 02139, USA. ; AIDS and Cancer Virus Program, Leidos Biomedical Research, Incorporated, Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702, USA. ; Gene Therapy Center, University of Massachusetts Medical School, Worcester, Massachusetts 01655, USA. ; 1] Department of Comparative Pathology, Harvard Medical School, New England Primate Research Center, Southborough, Massachusetts 01772, USA [2] Department of Pathology, University of Miami Miller School of Medicine, Miami, Florida 33136, USA. ; Department of Pathology and Laboratory Medicine, University of Wisconsin, Madison, Wisconsin 53711, USA. ; Beth Israel Deaconess Medical Center, Boston, Massachusetts 02215, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25707797" target="_blank"〉PubMed〈/a〉
    Keywords: AIDS Vaccines/genetics/immunology ; Animals ; Antibodies, Neutralizing/immunology ; Antigens, CD4/genetics/*immunology ; CCR5 Receptor Antagonists/immunology ; Dependovirus/*genetics ; Female ; Genetic Therapy ; HIV Antibodies/immunology ; HIV-1/immunology ; HIV-2/immunology ; Immunoglobulins/genetics/*immunology ; Macaca mulatta ; Male ; Neutralization Tests ; Receptors, CCR5/metabolism ; Simian Acquired Immunodeficiency Syndrome/*immunology/*prevention & ; control/virology ; Simian Immunodeficiency Virus/*immunology ; *Virus Internalization
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Annals of the New York Academy of Sciences 588 (1990), S. 0 
    ISSN: 1749-6632
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Natural Sciences in General
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2012-01-23
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2012-02-08
    Description: Research has consistently documented that social relationships influence physical health, a link that may implicate systemic inflammation. We examined whether daily social interactions predict levels of proinflammatory cytokines IL-6 and the soluble receptor for tumor necrosis factor-α (sTNFαRII) and their reactivity to a social stressor. One-hundred twenty-two healthy young adults completed daily diaries for 8 d that assessed positive, negative, and competitive social interactions. Participants then engaged in laboratory stress challenges, and IL-6 and sTNFαRII were collected at baseline and at 25- and 80-min poststressor, from oral mucosal transudate. Negative social interactions predicted elevated sTNFαRII at baseline, and IL-6 and sTNFαRII 25-min poststressor, as well as total output of sTNFαRII. Competitive social interactions predicted elevated baseline levels of IL-6 and sTNFαRII and total output of both cytokines. These findings suggest that daily social interactions that are negative and competitive are associated prospectively with heightened proinflammatory cytokine activity.
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2015-03-11
    Description: A speleothem δ18O record from Xiaobailong cave in southwest China characterizes changes in summer monsoon precipitation in Northeastern India, the Himalayan foothills, Bangladesh, and northern Indochina over the last 252 kyr. This record is dominated by 23-kyr precessional cycles punctuated by prominent millennial-scale oscillations that are synchronous with Heinrich events...
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2016-05-20
    Description: Lichen-forming fungi and extracts derived from them have been used as alternative medicine sources for millennia and recently there has been a renewed interest in their known bioactive properties for anticancer agents, cosmetics and antibiotics. Although lichen-forming fungus-derived compounds are biologically and commercially valuable, few studies have been performed to determine their modes of action. This study used chemical-genetic and chemogenomic high-throughput analyses to gain insight into the modes of action of Caloplaca flavoruscens extracts. High-throughput screening of 575 lichen extracts was performed and 39 extracts were identified which inhibited yeast growth. A C. flavoruscens extract was selected as a promising antifungal and was subjected to genome-wide haploinsufficiency profiling and homozygous profiling assays. These screens revealed that yeast deletion strains lacking Rsc8, Pro1 and Toa2 were sensitive to three concentrations (IC 25.5 , IC 25 and IC 50 , respectively) of C. flavoruscens extract. Gene-enrichment analysis of the data showed that C. flavoruscens extracts appear to perturb transcription and chromatin remodeling.
    Keywords: Biotechnology & Synthetic Biology
    Print ISSN: 0378-1097
    Electronic ISSN: 1574-6968
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...