ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 1998-05-09
    Description: The type III secretion system of Salmonella typhimurium directs the translocation of proteins into host cells. Evolutionarily related to the flagellar assembly machinery, this system is also present in other pathogenic bacteria, but its organization is unknown. Electron microscopy revealed supramolecular structures spanning the inner and outer membranes of flagellated and nonflagellated strains; such structures were not detected in strains carrying null mutations in components of the type III apparatus. Isolated structures were found to contain at least three proteins of this secretion system. Thus, the type III apparatus of S. typhimurium, and presumably other bacteria, exists as a supramolecular structure in the bacterial envelope.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kubori, T -- Matsushima, Y -- Nakamura, D -- Uralil, J -- Lara-Tejero, M -- Sukhan, A -- Galan, J E -- Aizawa, S I -- New York, N.Y. -- Science. 1998 Apr 24;280(5363):602-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biosciences, Teikyo University, 1-1 Toyosatodai, Utsunomiya 320, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9554854" target="_blank"〉PubMed〈/a〉
    Keywords: Bacterial Outer Membrane Proteins/analysis ; Bacterial Proteins/*analysis/chemistry/*metabolism/ultrastructure ; Cell Membrane/chemistry/ultrastructure ; Centrifugation, Density Gradient ; Macromolecular Substances ; Membrane Proteins/*analysis/chemistry/ultrastructure ; *Membrane Transport Proteins ; Microscopy, Electron ; Microscopy, Immunoelectron ; Porins/analysis ; Salmonella typhimurium/*chemistry/metabolism/*ultrastructure
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2001-06-26
    Description: Recent studies in bacterial pathogenesis reveal common and contrasting mechanisms of pathogen virulence and host resistance in plant and animal diseases. This review presents recent developments in the study of plant and animal pathogenesis, with respect to bacterial colonization and the delivery of effector proteins to the host. Furthermore, host defense responses in both plants and animals are discussed in relation to mechanisms of pathogen recognition and defense signaling. Future studies will greatly add to our understanding of the molecular events defining host-pathogen interactions.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Staskawicz, B J -- Mudgett, M B -- Dangl, J L -- Galan, J E -- New York, N.Y. -- Science. 2001 Jun 22;292(5525):2285-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Plant and Microbial Biology, University of California at Berkeley, Berkeley, CA 94720, USA. stask@nature.berkeley.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11423652" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Bacteria/genetics/metabolism/*pathogenicity ; Bacterial Infections/immunology/microbiology ; Bacterial Proteins/chemistry/genetics/metabolism ; Genes, Bacterial ; Genes, Plant ; Immunity, Innate ; Molecular Sequence Data ; Plant Diseases/*microbiology ; Plant Proteins/chemistry/genetics/metabolism ; Plants/genetics/metabolism/*microbiology ; Proteins/genetics/metabolism ; Virulence
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1999-03-26
    Description: Entry of the bacterium Salmonella typhimurium into host cells requires membrane ruffling and rearrangement of the actin cytoskeleton. Here, it is shown that the bacterial protein SipA plays a critical role in this process. SipA binds directly to actin, decreases its critical concentration, and inhibits depolymerization of actin filaments. These activities result in the spatial localization and more pronounced outward extension of the Salmonella-induced membrane ruffles, thereby facilitating bacterial uptake.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zhou, D -- Mooseker, M S -- Galan, J E -- AI30492/AI/NIAID NIH HHS/ -- DK25387/DK/NIDDK NIH HHS/ -- GM52543/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1999 Mar 26;283(5410):2092-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Section of Microbial Pathogenesis, Boyer Center for Molecular Medicine, Yale School of Medicine, New Haven, CT 06536, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10092234" target="_blank"〉PubMed〈/a〉
    Keywords: Actins/chemistry/genetics/*metabolism ; Antigens, Bacterial/metabolism ; Bacterial Proteins/chemistry/genetics/*metabolism ; Binding Sites ; Biopolymers ; Cell Membrane/ultrastructure ; HeLa Cells ; Humans ; *Microfilament Proteins ; Microscopy, Fluorescence ; Mutation ; Recombinant Fusion Proteins/metabolism ; Salmonella typhimurium/genetics/metabolism/*pathogenicity ; Signal Transduction ; Vinculin/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1999-05-21
    Description: Several Gram-negative pathogenic bacteria have evolved a complex protein secretion system termed type III to deliver bacterial effector proteins into host cells that then modulate host cellular functions. These bacterial devices are present in both plant and animal pathogenic bacteria and are evolutionarily related to the flagellar apparatus. Although type III secretion systems are substantially conserved, the effector molecules they deliver are unique for each bacterial species. Understanding the biology of these devices may allow the development of novel prevention and therapeutic approaches for several infectious diseases.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Galan, J E -- Collmer, A -- AI30491/AI/NIAID NIH HHS/ -- GM52543/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1999 May 21;284(5418):1322-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Section of Microbial Pathogenesis, Boyer Center for Molecular Medicine, Yale School of Medicine, New Haven, CT 06536, USA. jorge.galan@yale.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10334981" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Bacterial Outer Membrane Proteins/genetics/*metabolism/secretion ; Bacterial Proteins/genetics/*metabolism/secretion ; Flagella/metabolism ; Genes, Bacterial ; Gram-Negative Bacteria/genetics/*metabolism/pathogenicity ; Gram-Negative Bacterial Infections/*microbiology ; Humans ; Plants/microbiology ; Protein Biosynthesis ; Transcription, Genetic ; Virulence
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2000-10-13
    Description: Many bacterial pathogens encode a multisubunit toxin, termed cytolethal distending toxin (CDT), that induces cell cycle arrest, cytoplasm distention, and, eventually, chromatin fragmentation and cell death. In one such pathogen, Campylobacter jejuni, one of the subunits of this toxin, CdtB, was shown to exhibit features of type I deoxyribonucleases. Transient expression of this subunit in cultured cells caused marked chromatin disruption. Microinjection of low amounts of CdtB induced cytoplasmic distention and cell cycle arrest. CdtB mutants with substitutions in residues equivalent to those required for catalysis or magnesium binding in type I deoxyribonucleases did not cause chromatin disruption. CDT holotoxin containing these mutant forms of CdtB did not induce morphological changes or cell cycle arrest.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lara-Tejero, M -- Galan, J E -- New York, N.Y. -- Science. 2000 Oct 13;290(5490):354-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Section of Microbial Pathogenesis, Boyer Center for Molecular Medicine, Yale School of Medicine, New Haven, CT 06536, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11030657" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Bacterial Toxins/chemistry/genetics/*metabolism/*toxicity ; COS Cells ; *Campylobacter jejuni/genetics/pathogenicity ; Cell Death ; Cell Line ; Cell Nucleus/metabolism ; Chromatin/ultrastructure ; DNA/*metabolism ; *DNA Damage ; Deoxyribonuclease I/chemistry/*metabolism ; *G2 Phase ; Microinjections ; Molecular Sequence Data ; Mutation ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 1998-07-24
    Description: Avirulent strains of Salmonella typhimurium are being considered as antigen delivery vectors. During its intracellular stage in the host, S. typhimurium resides within a membrane-bound compartment and is not an efficient inducer of class I-restricted immune responses. Viral epitopes were successfully delivered to the host-cell cytosol by using the type III protein secretion system of S. typhimurium. This resulted in class I-restricted immune responses that protected vaccinated animals against lethal infection. This approach may allow the efficient use of S. typhimurium as an antigen delivery system to control infections by pathogens that require this type of immune response for protection.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Russmann, H -- Shams, H -- Poblete, F -- Fu, Y -- Galan, J E -- Donis, R O -- New York, N.Y. -- Science. 1998 Jul 24;281(5376):565-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Genetics and Microbiology, School of Medicine, State University of New York at Stony Brook, Stony Brook, NY 11794-5222, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9677200" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Antigen Presentation ; Antigens, Viral/immunology/metabolism ; Bacterial Proteins/genetics/*metabolism ; Cytosol/*immunology ; Endoplasmic Reticulum/immunology/metabolism ; Epitopes/*immunology ; Histocompatibility Antigens Class I/immunology ; Hybridomas ; Lymphocytic Choriomeningitis/prevention & control ; Lymphocytic choriomeningitis virus/immunology ; Mice ; Mice, Inbred C57BL ; Nucleoproteins/immunology/metabolism ; Peptide Fragments/immunology/metabolism ; Protein Tyrosine Phosphatases/genetics/*metabolism ; Recombinant Fusion Proteins/immunology/metabolism ; *Salmonella typhimurium/metabolism/pathogenicity ; T-Lymphocytes/immunology ; T-Lymphocytes, Cytotoxic/immunology ; Tumor Cells, Cultured ; Vaccines, Synthetic/*administration & dosage/immunology ; Viral Core Proteins/immunology/metabolism ; Viral Vaccines/immunology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2005-03-05
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Altman, Sidney -- Bassler, Bonnie L -- Beckwith, Jon -- Belfort, Marlene -- Berg, Howard C -- Bloom, Barry -- Brenchley, Jean E -- Campbell, Allan -- Collier, R John -- Connell, Nancy -- Cozzarelli, Nicholas R -- Craig, Nancy L -- Darst, Seth -- Ebright, Richard H -- Elledge, Stephen J -- Falkow, Stanley -- Galan, Jorge E -- Gottesman, Max -- Gourse, Richard -- Grindley, Nigel D F -- Gross, Carol A -- Grossman, Alan -- Hochschild, Ann -- Howe, Martha -- Hurwitz, Jerard -- Isberg, Ralph R -- Kaplan, Samuel -- Kornberg, Arthur -- Kustu, Sydney G -- Landick, Robert C -- Landy, Arthur -- Levy, Stuart B -- Losick, Richard -- Long, Sharon R -- Maloy, Stanley R -- Mekalanos, John J -- Neidhardt, Frederick C -- Pace, Norman R -- Ptashne, Mark -- Roberts, Jeffrey W -- Roth, John R -- Rothman-Denes, Lucia B -- Salyers, Abigail -- Schaechter, Moselio -- Shapiro, Lucy -- Silhavy, Thomas J -- Simon, Melvin I -- Walker, Graham -- Yanofsky, Charles -- Zinder, Norton -- New York, N.Y. -- Science. 2005 Mar 4;307(5714):1409-10.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15746409" target="_blank"〉PubMed〈/a〉
    Keywords: Biological Warfare ; *Biomedical Research/economics ; *Bioterrorism ; Financing, Government ; *Microbiology ; *National Institutes of Health (U.S.) ; Peer Review, Research ; Public Health ; *Research Support as Topic ; United States
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2004-06-19
    Description: Salmonella enterica, the cause of food poisoning and typhoid fever, induces actin cytoskeleton rearrangements and membrane ruffling to gain access into nonphagocytic cells, where it can replicate and avoid innate immune defenses. Here, we found that SopB, a phosphoinositide phosphatase that is delivered into host cells by a type III secretion system, was essential for the establishment of Salmonella's intracellular replicative niche. SopB mediated the formation of spacious phagosomes following bacterial entry and was responsible for maintaining high levels of phosphatidylinositol-three-phosphate [PtdIns(3)P] in the membrane of the bacteria-containing vacuoles. Absence of SopB caused a significant defect in the maturation of the Salmonella-containing vacuole and impaired bacterial intracellular growth.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hernandez, Lorraine D -- Hueffer, Karsten -- Wenk, Markus R -- Galan, Jorge E -- AI055472/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 2004 Jun 18;304(5678):1805-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Section of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT 06536, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15205533" target="_blank"〉PubMed〈/a〉
    Keywords: Antigens, CD/metabolism ; Bacterial Proteins/genetics/*metabolism ; Cell Line ; Cell Membrane/metabolism/ultrastructure ; Cytoplasmic Vesicles/metabolism/*microbiology/ultrastructure ; Epithelial Cells/microbiology ; Gene Deletion ; Genomic Islands ; Humans ; Intestinal Mucosa/cytology/*microbiology ; Lysosome-Associated Membrane Glycoproteins ; Microscopy, Video ; Mutation ; Phagosomes/metabolism/*microbiology ; Phosphatidylinositol Phosphates/metabolism ; Phosphatidylinositols/*metabolism ; Recombinant Fusion Proteins/metabolism ; Salmonella typhimurium/genetics/growth & development/*metabolism/pathogenicity ; Vacuoles/metabolism/microbiology/ultrastructure
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2004-11-06
    Description: Type III secretion systems (TTSSs) mediate translocation of virulence factors into host cells. We report the 17-angstrom resolution structures of a central component of Salmonella typhimurium TTSS, the needle complex, and its assembly precursor, the bacterial envelope-anchored base. Both the base and the fully assembled needle complex adopted multiple oligomeric states in vivo, and needle assembly was accompanied by recruitment of the protein PrgJ as a structural component of the base. Moreover, conformational changes during needle assembly created scaffolds for anchoring both PrgJ and the needle substructure and may provide the basis for substrate-specificity switching during type III secretion.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1459965/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1459965/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Marlovits, Thomas C -- Kubori, Tomoko -- Sukhan, Anand -- Thomas, Dennis R -- Galan, Jorge E -- Unger, Vinzenz M -- AI30492/AI/NIAID NIH HHS/ -- GM35433/GM/NIGMS NIH HHS/ -- GM66145/GM/NIGMS NIH HHS/ -- P42 RR-01081/RR/NCRR NIH HHS/ -- R01 GM066145/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2004 Nov 5;306(5698):1040-2.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT 06520-8024, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15528446" target="_blank"〉PubMed〈/a〉
    Keywords: Bacterial Proteins/chemistry/*ultrastructure ; Cryoelectron Microscopy ; Macromolecular Substances ; Membrane Transport Proteins/chemistry/ultrastructure ; Salmonella typhimurium/chemistry/*ultrastructure
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2011-08-09
    Description: The intracellular pathogen Legionella pneumophila modulates the activity of host GTPases to direct the transport and assembly of the membrane-bound compartment in which it resides. In vitro studies have indicated that the Legionella protein DrrA post-translationally modifies the GTPase Rab1 by a process called AMPylation. Here we used mass spectrometry to investigate post-translational modifications to Rab1 that occur during infection of host cells by Legionella. Consistent with in vitro studies, DrrA-mediated AMPylation of a conserved tyrosine residue in the switch II region of Rab1 was detected during infection. In addition, a modification to an adjacent serine residue in Rab1 was discovered, which was independent of DrrA. The Legionella effector protein AnkX was required for this modification. Biochemical studies determined that AnkX directly mediates the covalent attachment of a phosphocholine moiety to Rab1. This phosphocholine transferase activity used CDP-choline as a substrate and required a conserved histidine residue located in the FIC domain of the AnkX protein. During infection, AnkX modified both Rab1 and Rab35, which explains how this protein modulates membrane transport through both the endocytic and exocytic pathways of the host cell. Thus, phosphocholination of Rab GTPases represents a mechanism by which bacterial FIC-domain-containing proteins can alter host-cell functions.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3206611/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3206611/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Mukherjee, Shaeri -- Liu, Xiaoyun -- Arasaki, Kohei -- McDonough, Justin -- Galan, Jorge E -- Roy, Craig R -- F32 AI082927/AI/NIAID NIH HHS/ -- R01 AI041699/AI/NIAID NIH HHS/ -- R01 AI041699-16/AI/NIAID NIH HHS/ -- R01 AI064559/AI/NIAID NIH HHS/ -- R01 AI064559-05/AI/NIAID NIH HHS/ -- R01-AI048770/AI/NIAID NIH HHS/ -- R01-AI064559/AI/NIAID NIH HHS/ -- U54-AI057158/AI/NIAID NIH HHS/ -- England -- Nature. 2011 Aug 7;477(7362):103-6. doi: 10.1038/nature10335.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Section of Microbial Pathogenesis, Yale University School of Medicine, Boyer Center for Molecular Medicine, Yale University, New Haven, Connecticut, CT 06536, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21822290" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Bacterial Proteins/*metabolism ; COS Cells ; Cercopithecus aethiops ; Diacylglycerol Cholinephosphotransferase/*metabolism ; Guanine Nucleotide Exchange Factors/metabolism ; HEK293 Cells ; Host-Pathogen Interactions/*physiology ; Humans ; Legionella pneumophila/*enzymology ; Legionnaires' Disease/*enzymology/physiopathology ; Mass Spectrometry ; Protein Processing, Post-Translational ; rab GTP-Binding Proteins/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...