ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 1997-01-24
    Description: A new paradigm for oxygen activation is required for enzymes such as methane monooxygenase (MMO), for which catalysis depends on a nonheme diiron center instead of the more familiar Fe-porphyrin cofactor. On the basis of precedents from synthetic diiron complexes, a high-valent Fe2(micro-O)2 diamond core has been proposed as the key oxidizing species for MMO and other nonheme diiron enzymes such as ribonucleotide reductase and fatty acid desaturase. The presence of a single short Fe-O bond (1.77 angstroms) per Fe atom and an Fe-Fe distance of 2.46 angstroms in MMO reaction intermediate Q, obtained from extended x-ray absorption fine structure and Mossbauer analysis, provides spectroscopic evidence that the diiron center in Q has an Fe2IVO2 diamond core.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Shu, L -- Nesheim, J C -- Kauffmann, K -- Munck, E -- Lipscomb, J D -- Que, L Jr -- GM-08277/GM/NIGMS NIH HHS/ -- GM-22701/GM/NIGMS NIH HHS/ -- GM-40466/GM/NIGMS NIH HHS/ -- R01 GM040466/GM/NIGMS NIH HHS/ -- etc. -- New York, N.Y. -- Science. 1997 Jan 24;275(5299):515-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry and Center for Metals in Biocatalysis, University of Minnesota, Minneapolis, MN 55455, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8999792" target="_blank"〉PubMed〈/a〉
    Keywords: Binding Sites ; Catalysis ; Crystallography, X-Ray ; Dimerization ; Gram-Negative Aerobic Bacteria/*enzymology ; Iron/*chemistry ; Molecular Structure ; Oxidation-Reduction ; Oxygen/*chemistry ; Oxygenases/*chemistry/metabolism ; Spectroscopy, Mossbauer ; Spectrum Analysis
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2007-04-21
    Description: We report the structures of three intermediates in the O2 activation and insertion reactions of an extradiol ring-cleaving dioxygenase. A crystal of Fe2+-containing homoprotocatechuate 2,3-dioxygenase was soaked in the slow substrate 4-nitrocatechol in a low O2 atmosphere. The x-ray crystal structure shows that three different intermediates reside in different subunits of a single homotetrameric enzyme molecule. One of these is the key substrate-alkylperoxo-Fe2+ intermediate, which has been predicted, but not structurally characterized, in an oxygenase. The intermediates define the major chemical steps of the dioxygenase mechanism and point to a general mechanistic strategy for the diverse 2-His-1-carboxylate enzyme family.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2720167/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2720167/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kovaleva, Elena G -- Lipscomb, John D -- GM24689/GM/NIGMS NIH HHS/ -- R01 GM024689/GM/NIGMS NIH HHS/ -- R01 GM024689-27/GM/NIGMS NIH HHS/ -- R01 GM024689-28/GM/NIGMS NIH HHS/ -- R37 GM024689/GM/NIGMS NIH HHS/ -- R37 GM024689-26/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2007 Apr 20;316(5823):453-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17446402" target="_blank"〉PubMed〈/a〉
    Keywords: Binding Sites ; Brevibacterium/*enzymology ; Catalysis ; Catechols/chemistry/metabolism ; Crystallization ; Crystallography, X-Ray ; Dioxygenases/*chemistry/*metabolism ; Ferric Compounds/*chemistry/metabolism ; Ferrous Compounds/chemistry ; Ligands ; Models, Chemical ; Models, Molecular ; Oxygen/chemistry/metabolism ; Protein Conformation ; Protein Subunits/chemistry/metabolism ; Superoxides/chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2015-01-22
    Description: Methane monooxygenase (MMO) catalyses the O2-dependent conversion of methane to methanol in methanotrophic bacteria, thereby preventing the atmospheric egress of approximately one billion tons of this potent greenhouse gas annually. The key reaction cycle intermediate of the soluble form of MMO (sMMO) is termed compound Q (Q). Q contains a unique dinuclear Fe(IV) cluster that reacts with methane to break an exceptionally strong 105 kcal mol(-1) C-H bond and insert one oxygen atom. No other biological oxidant, except that found in the particulate form of MMO, is capable of such catalysis. The structure of Q remains controversial despite numerous spectroscopic, computational and synthetic model studies. A definitive structural assignment can be made from resonance Raman vibrational spectroscopy but, despite efforts over the past two decades, no vibrational spectrum of Q has yet been obtained. Here we report the core structures of Q and the following product complex, compound T, using time-resolved resonance Raman spectroscopy (TR(3)). TR(3) permits fingerprinting of intermediates by their unique vibrational signatures through extended signal averaging for short-lived species. We report unambiguous evidence that Q possesses a bis-mu-oxo diamond core structure and show that both bridging oxygens originate from O2. This observation strongly supports a homolytic mechanism for O-O bond cleavage. We also show that T retains a single oxygen atom from O2 as a bridging ligand, while the other oxygen atom is incorporated into the product. Capture of the extreme oxidizing potential of Q is of great contemporary interest for bioremediation and the development of synthetic approaches to methane-based alternative fuels and chemical industry feedstocks. Insight into the formation and reactivity of Q from the structure reported here is an important step towards harnessing this potential.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4429310/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4429310/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Banerjee, Rahul -- Proshlyakov, Yegor -- Lipscomb, John D -- Proshlyakov, Denis A -- GM096132/GM/NIGMS NIH HHS/ -- GM100943/GM/NIGMS NIH HHS/ -- GM40466/GM/NIGMS NIH HHS/ -- R01 GM040466/GM/NIGMS NIH HHS/ -- R01 GM096132/GM/NIGMS NIH HHS/ -- R01 GM100943/GM/NIGMS NIH HHS/ -- England -- Nature. 2015 Feb 19;518(7539):431-4. doi: 10.1038/nature14160. Epub 2015 Jan 21.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Department of Biochemistry, Molecular Biology &Biophysics, University of Minnesota, Minneapolis, Minnesota 55455, USA [2] Center for Metals in Biocatalysis, University of Minnesota, Minneapolis, Minnesota 55455, USA. ; Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25607364" target="_blank"〉PubMed〈/a〉
    Keywords: Biocatalysis ; Biodegradation, Environmental ; Carbon/chemistry/metabolism ; Hydrogen/chemistry/metabolism ; Iron Compounds/*chemistry/metabolism ; Methane/*chemistry/*metabolism ; Methanol/*chemistry/*metabolism ; Oxidation-Reduction ; Oxygen/chemistry/metabolism ; Oxygen Isotopes ; Oxygenases/*metabolism ; Spectrum Analysis, Raman ; Vibration
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1979-10-19
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lipscomb, J D -- New York, N.Y. -- Science. 1979 Oct 19;206(4416):328-9.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17733679" target="_blank"〉PubMed〈/a〉
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1982-08-20
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lipscomb, J D -- New York, N.Y. -- Science. 1982 Aug 20;217(4561):725.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17772317" target="_blank"〉PubMed〈/a〉
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    Biochemistry 14 (1975), S. 4151-4158 
    ISSN: 1520-4995
    Source: ACS Legacy Archives
    Topics: Biology , Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    Biochemistry 12 (1973), S. 258-265 
    ISSN: 1520-4995
    Source: ACS Legacy Archives
    Topics: Biology , Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Microbiology 48 (1994), S. 371-399 
    ISSN: 0066-4227
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    Journal of the American Chemical Society 114 (1992), S. 7561-7562 
    ISSN: 1520-5126
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    ISSN: 1520-5126
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...