ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2009-11-07
    Description: Virtually all of the 560 human proteases are stored as inactive proenyzmes and are strictly regulated. We report the identification and characterization of the first small molecules that directly activate proenzymes, the apoptotic procaspases-3 and -6. It is surprising that these compounds induce autoproteolytic activation by stabilizing a conformation that is both more active and more susceptible to intermolecular proteolysis. These procaspase activators bypass the normal upstream proapoptotic signaling cascades and induce rapid apoptosis in a variety of cell lines. Systematic biochemical and biophysical analyses identified a cluster of mutations in procaspase-3 that resist small-molecule activation both in vitro and in cells. Compounds that induce gain of function are rare, and the activators reported here will enable direct control of the executioner caspases in apoptosis and in cellular differentiation. More generally, these studies presage the discovery of other proenzyme activators to explore fundamental processes of proenzyme activation and their fate-determining roles in biology.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2886848/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2886848/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wolan, Dennis W -- Zorn, Julie A -- Gray, Daniel C -- Wells, James A -- F32 CA119641/CA/NCI NIH HHS/ -- F32 CA119641-03/CA/NCI NIH HHS/ -- R01 CA136779/CA/NCI NIH HHS/ -- R21 N5057022/PHS HHS/ -- New York, N.Y. -- Science. 2009 Nov 6;326(5954):853-8. doi: 10.1126/science.1177585.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pharmaceutical Chemistry, University of California, San Francisco, Byers Hall, 1700 4th Street, San Francisco, CA 94158, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19892984" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Apoptosis ; Benzopyrans/chemistry/*metabolism/pharmacology ; Biocatalysis ; Caspase 3/chemistry/genetics/*metabolism ; Caspase 6/chemistry/genetics/*metabolism ; Caspase Inhibitors ; Catalytic Domain ; Cell Line, Transformed ; Cell Line, Tumor ; Cells, Cultured ; Enzyme Activation ; Enzyme Activators/chemistry/*metabolism/pharmacology ; Enzyme Inhibitors/metabolism/pharmacology ; Enzyme Precursors/antagonists & inhibitors/chemistry/genetics/*metabolism ; Granzymes/metabolism ; Humans ; Imidazoles/chemistry/*metabolism/pharmacology ; Kinetics ; Mice ; Molecular Structure ; Mutagenesis ; Pyridines/chemistry/*metabolism/pharmacology ; Signal Transduction ; Small Molecule Libraries/chemistry/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-04-07
    Print ISSN: 0376-9429
    Electronic ISSN: 1573-2673
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...