ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2014-12-17
    Description: To provide context for the diversification of archosaurs--the group that includes crocodilians, dinosaurs, and birds--we generated draft genomes of three crocodilians: Alligator mississippiensis (the American alligator), Crocodylus porosus (the saltwater crocodile), and Gavialis gangeticus (the Indian gharial). We observed an exceptionally slow rate of genome evolution within crocodilians at all levels, including nucleotide substitutions, indels, transposable element content and movement, gene family evolution, and chromosomal synteny. When placed within the context of related taxa including birds and turtles, this suggests that the common ancestor of all of these taxa also exhibited slow genome evolution and that the comparatively rapid evolution is derived in birds. The data also provided the opportunity to analyze heterozygosity in crocodilians, which indicates a likely reduction in population size for all three taxa through the Pleistocene. Finally, these data combined with newly published bird genomes allowed us to reconstruct the partial genome of the common ancestor of archosaurs, thereby providing a tool to investigate the genetic starting material of crocodilians, birds, and dinosaurs.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4386873/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4386873/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Green, Richard E -- Braun, Edward L -- Armstrong, Joel -- Earl, Dent -- Nguyen, Ngan -- Hickey, Glenn -- Vandewege, Michael W -- St John, John A -- Capella-Gutierrez, Salvador -- Castoe, Todd A -- Kern, Colin -- Fujita, Matthew K -- Opazo, Juan C -- Jurka, Jerzy -- Kojima, Kenji K -- Caballero, Juan -- Hubley, Robert M -- Smit, Arian F -- Platt, Roy N -- Lavoie, Christine A -- Ramakodi, Meganathan P -- Finger, John W Jr -- Suh, Alexander -- Isberg, Sally R -- Miles, Lee -- Chong, Amanda Y -- Jaratlerdsiri, Weerachai -- Gongora, Jaime -- Moran, Christopher -- Iriarte, Andres -- McCormack, John -- Burgess, Shane C -- Edwards, Scott V -- Lyons, Eric -- Williams, Christina -- Breen, Matthew -- Howard, Jason T -- Gresham, Cathy R -- Peterson, Daniel G -- Schmitz, Jurgen -- Pollock, David D -- Haussler, David -- Triplett, Eric W -- Zhang, Guojie -- Irie, Naoki -- Jarvis, Erich D -- Brochu, Christopher A -- Schmidt, Carl J -- McCarthy, Fiona M -- Faircloth, Brant C -- Hoffmann, Federico G -- Glenn, Travis C -- Gabaldon, Toni -- Paten, Benedict -- Ray, David A -- 1U41HG006992-2/HG/NHGRI NIH HHS/ -- 1U41HG007234-01/HG/NHGRI NIH HHS/ -- 5U01HG004695/HG/NHGRI NIH HHS/ -- R01 HG002939/HG/NHGRI NIH HHS/ -- U41 HG006992/HG/NHGRI NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2014 Dec 12;346(6215):1254449. doi: 10.1126/science.1254449. Epub 2014 Dec 11.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biomolecular Engineering, University of California, Santa Cruz, CA 95064, USA. ed@soe.ucsc.edu david.a.ray@ttu.edu. ; Department of Biology and Genetics Institute, University of Florida, Gainesville, FL 32611, USA. ; Department of Biomolecular Engineering, University of California, Santa Cruz, CA 95064, USA. Center for Biomolecular Science and Engineering, University of California, Santa Cruz, CA 95064, USA. ; Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, Mississippi State, MS 39762, USA. ; Department of Biomolecular Engineering, University of California, Santa Cruz, CA 95064, USA. ; Bioinformatics and Genomics Programme, Centre for Genomic Regulation, 08003 Barcelona, Spain. Universitat Pompeu Fabra, 08003 Barcelona, Spain. ; Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO 80045, USA. Department of Biology, University of Texas, Arlington, TX 76019, USA. ; Department of Computer and Information Sciences, University of Delaware, Newark, DE 19717, USA. ; Department of Biology, University of Texas, Arlington, TX 76019, USA. ; Instituto de Ciencias Ambientales y Evolutivas, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile. ; Genetic Information Research Institute, Mountain View, CA 94043, USA. ; Institute for Systems Biology, Seattle, WA 98109, USA. ; Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, Mississippi State, MS 39762, USA. Institute for Genomics, Biocomputing and Biotechnology, Mississippi State University, Mississippi State, MS 39762, USA. ; Department of Environmental Health Science, University of Georgia, Athens, GA 30602, USA. ; Institute of Experimental Pathology (ZMBE), University of Munster, D-48149 Munster, Germany. Department of Evolutionary Biology (EBC), Uppsala University, SE-752 36 Uppsala, Sweden. ; Porosus Pty. Ltd., Palmerston, NT 0831, Australia. Faculty of Veterinary Science, University of Sydney, Sydney, NSW 2006, Australia. Centre for Crocodile Research, Noonamah, NT 0837, Australia. ; Faculty of Veterinary Science, University of Sydney, Sydney, NSW 2006, Australia. ; Departamento de Desarrollo Biotecnologico, Instituto de Higiene, Facultad de Medicina, Universidad de la Republica, Montevideo, Uruguay. ; Moore Laboratory of Zoology, Occidental College, Los Angeles, CA 90041, USA. ; College of Agriculture and Life Sciences, University of Arizona, Tucson, AZ 85721, USA. ; Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA. ; School of Plant Sciences, University of Arizona, Tucson, AZ 85721, USA. ; Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, NC 27607, USA. ; Howard Hughes Medical Institute, Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA. ; Institute for Genomics, Biocomputing and Biotechnology, Mississippi State University, Mississippi State, MS 39762, USA. ; Institute for Genomics, Biocomputing and Biotechnology, Mississippi State University, Mississippi State, MS 39762, USA. Department of Plant and Soil Sciences, Mississippi State University, Mississippi State, MS 39762, USA. ; Institute of Experimental Pathology (ZMBE), University of Munster, D-48149 Munster, Germany. ; Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO 80045, USA. ; Center for Biomolecular Science and Engineering, University of California, Santa Cruz, CA 95064, USA. Howard Hughes Medical Institute, Bethesda, MD 20814, USA. ; Department of Microbiology and Cell Science, University of Florida, Gainesville, FL 32611, USA. ; China National GeneBank, BGI-Shenzhen, Shenzhen, China. Center for Social Evolution, Department of Biology, University of Copenhagen, Copenhagen, Denmark. ; Department of Biological Sciences, Graduate School of Science, University of Tokyo, Tokyo, Japan. ; Department of Earth and Environmental Sciences, University of Iowa, Iowa City, IA 52242, USA. ; Department of Animal and Food Sciences, University of Delaware, Newark, DE 19717, USA. ; School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, AZ 85721, USA. ; Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA 90019, USA. Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA. ; Bioinformatics and Genomics Programme, Centre for Genomic Regulation, 08003 Barcelona, Spain. Universitat Pompeu Fabra, 08003 Barcelona, Spain. Institucio Catalana de Recerca i Estudis Avancats, 08010 Barcelona, Spain. ; Center for Biomolecular Science and Engineering, University of California, Santa Cruz, CA 95064, USA. ; Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, Mississippi State, MS 39762, USA. Institute for Genomics, Biocomputing and Biotechnology, Mississippi State University, Mississippi State, MS 39762, USA. Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409, USA. ed@soe.ucsc.edu david.a.ray@ttu.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25504731" target="_blank"〉PubMed〈/a〉
    Keywords: Alligators and Crocodiles/classification/*genetics ; Animals ; Biological Evolution ; Birds/classification/*genetics ; Conserved Sequence ; DNA Transposable Elements ; Dinosaurs/classification/*genetics ; *Evolution, Molecular ; Genetic Variation ; *Genome ; Molecular Sequence Annotation ; Molecular Sequence Data ; Phylogeny ; Reptiles/classification/genetics ; Sequence Alignment ; Sequence Analysis, DNA ; Transcriptome
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
  • 3
    Publication Date: 2013-12-11
    Description: Variations in the hormonal milieu after menopause may influence neural processes concerned with cognition, cognitive aging, and mood, but findings are inconsistent. In particular, cognitive effects of estradiol may vary with time since menopause, but this prediction has not been assessed directly using serum hormone concentrations. We studied 643 healthy...
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2012-11-04
    Description: DNA methylation is an essential mechanism controlling gene expression during differentiation and development. We investigated the epigenetic regulation of the nuclear-encoded, mitochondrial DNA (mtDNA) polymerase catalytic subunit ( PolgA ) by examining the methylation status of a CpG island within exon 2 of PolgA. Bisulphite sequencing identified low methylation levels (〈10%) within exon 2 of mouse oocytes, blastocysts and embryonic stem cells (ESCs), while somatic tissues contained significantly higher levels (〉40%). In contrast, induced pluripotent stem (iPS) cells and somatic nuclear transfer ESCs were hypermethylated (〉20%), indicating abnormal epigenetic reprogramming. Real time PCR analysis of 5-methylcytosine (5mC) and 5-hydroxymethylcytosine (5hmC) immunoprecipitated DNA suggests active DNA methylation and demethylation within exon 2 of PolgA . Moreover, neural differentiation of ESCs promoted de novo methylation and demethylation at the exon 2 locus. Regression analysis demonstrates that cell-specific PolgA expression levels were negatively correlated with DNA methylation within exon 2 and mtDNA copy number. Finally, using chromatin immunoprecipitation (ChIP) against RNA polymerase II (RNApII) phosphorylated on serine 2, we show increased DNA methylation levels are associated with reduced RNApII transcriptional elongation. This is the first study linking nuclear DNA epigenetic regulation with mtDNA regulation during differentiation and cell specialization.
    Print ISSN: 0305-1048
    Electronic ISSN: 1362-4962
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
  • 6
    Publication Date: 2020-11-03
    Description: Transplantation of peripheral nervous system glia is being explored for treating neural injuries, in particular central nervous system injuries. These glia, olfactory ensheathing cells (OECs) and Schwann cells (SCs), are thought to aid regeneration by clearing necrotic cells, (necrotic bodies, NBs), as well as myelin debris. The mechanism by which the glia phagocytose and traffic NBs are not understood. Here, we show that OECs and SCs recognize phosphatidylserine on NBs, followed by engulfment and trafficking to endosomes and lysosomes. We also showed that both glia can phagocytose and process myelin debris. We compared the time-course of glial phagocytosis (of both NBs and myelin) to that of macrophages. Internalization and trafficking were considerably slower in glia than in macrophages, and OECs were more efficient phagocytes than SCs. The two glial types also differed regarding their cytokine responses after NB challenge. SCs produced low amounts of the pro-inflammatory cytokine TNF-α while OECs did not produce detectable TNF-α. Thus, OECs have a higher capacity than SCs for phagocytosis and trafficking, whilst producing lower amounts of pro-inflammatory cytokines. These findings suggest that OEC transplantation into the injured nervous system may lead to better outcomes than SC transplantation.
    Electronic ISSN: 2045-2322
    Topics: Natural Sciences in General
    Published by Springer Nature
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...