ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2010-10-16
    Description: Molecular dynamics (MD) simulations are widely used to study protein motions at an atomic level of detail, but they have been limited to time scales shorter than those of many biologically critical conformational changes. We examined two fundamental processes in protein dynamics--protein folding and conformational change within the folded state--by means of extremely long all-atom MD simulations conducted on a special-purpose machine. Equilibrium simulations of a WW protein domain captured multiple folding and unfolding events that consistently follow a well-defined folding pathway; separate simulations of the protein's constituent substructures shed light on possible determinants of this pathway. A 1-millisecond simulation of the folded protein BPTI reveals a small number of structurally distinct conformational states whose reversible interconversion is slower than local relaxations within those states by a factor of more than 1000.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Shaw, David E -- Maragakis, Paul -- Lindorff-Larsen, Kresten -- Piana, Stefano -- Dror, Ron O -- Eastwood, Michael P -- Bank, Joseph A -- Jumper, John M -- Salmon, John K -- Shan, Yibing -- Wriggers, Willy -- New York, N.Y. -- Science. 2010 Oct 15;330(6002):341-6. doi: 10.1126/science.1187409.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉D. E. Shaw Research, 120 West 45th Street, New York, NY 10036, USA. David.Shaw@DEShawResearch.com〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20947758" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Substitution ; Aprotinin/*chemistry ; Computational Biology ; Computers ; Kinetics ; Microfilament Proteins/chemistry ; Models, Molecular ; *Molecular Dynamics Simulation ; Mutant Proteins/chemistry ; *Protein Conformation ; *Protein Folding ; Protein Structure, Tertiary ; Proteins/*chemistry ; Solvents ; Thermodynamics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...