ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    Biochemistry 24 (1985), S. 6854-6861 
    ISSN: 1520-4995
    Source: ACS Legacy Archives
    Topics: Biology , Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    Baltimore : Periodicals Archive Online (PAO)
    Human Biology. 65:6 (1993:Dec.) 1043 
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Annals of the New York Academy of Sciences 485 (1986), S. 0 
    ISSN: 1749-6632
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Natural Sciences in General
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Journal of molecular evolution 41 (1995), S. 299-312 
    ISSN: 1432-1432
    Keywords: Multigene family ; Gene duplication ; Concerted evolution ; Regulatory evolution ; Adaptive evolution ; Pseudogenes
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Recruitment of lysozyme to a digestive function in ruminant artiodactyls is associated with amplification of the gene. At least four of the approximately ten genes are expressed in the stomach, and several are expressed in nonstomach tissues. Characterization of additional lysozymelike sequences in the bovine genome has identified most, if not all, of the members of this gene family. There are at least six stomachlike lysozyme genes, two of which are pseudogenes. The stomach lysozyme pseudogenes show a pattern of concerted evolution similar to that of the functional stomach genes. At least four nonstomach lysozyme genes exist. The nonstomach lysozyme genes are not monophyletic. A gene encoding a tracheal lysozyme was isolated, and the stomach lysozyme of advanced ruminants was found to be more closely related to the tracheal lysozyme than to the stomach lysozyme of the camel or other nonstomach lysozyme genes of ruminants. The tracheal lysozyme shares with stomach lysozymes of advanced ruminants the deletion of amino acid 103, and several other adaptive sequence characteristics of stomach lysozymes. I suggest here that tracheal lysozyme has reverted from a functional stomach lysozyme. Tracheal lysozyme then represents a second instance of a change in lysozyme gene expression and function within ruminants.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Springer
    Journal of molecular evolution 33 (1991), S. 418-425 
    ISSN: 1432-1432
    Keywords: Polymerase chain reaction ; Direct sequencing ; Genomic blotting ; cDNA ; S1 mapping ; Promoter region ; Tree analysis ; Horizontal transfer ; Old World monkeys ; Evolutionary rates ; Statistical testing
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary Genomic blotting and enzymatic amplification show that the genome of the langur monkey (like that of other primates) contains only a single gene for lysozymec, in contrast to another group of foregut fermenters, the ruminants, which have a multigene family encoding this protein. Therefore, the langur stomach lysozyme gene has probably evolved recently (i.e., within the period of monkey evolution) from a conventional primate lysozyme. The sequences of cDNAs for the stomach lysozyme of langur and the conventional lysozymes of three other Old World monkeys were determined. Identification of the promoter for the stomach gene and comparison to the human gene, which is expressed conventionally in macrophages, show that both lysozyme genes use the same promoter. This suggests that the difference in expression patterns is due to change(s) in enhancer or silencer regulatory elements. With the cDNA sequences the hypothesis that the langur stomach lysozyme has converged in amino acid sequence upon the stomach lysozymes of ruminants is tested. Consistent with the convergence hypothesis, only those sites that specify amino acids in the mature lysozyme are shared uniquely with ruminant lysozyme genes. None of the silent sites at third positions of codons or in noncoding regions support a link between the langur and ruminants. Statistical analysis based on silent sites rules out the possibility of horizontal transfer of a stomach lysozyme gene between the langur and ruminant lineages and supports the close relationship of the langur lysozyme gene to that of other monkeys.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1432-1432
    Keywords: Prothrombin ; cDNA ; Hagfish
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The cDNA sequences of chicken and hagfish prothrombin have been determined. The sequences predict that prothrombin from both species is synthesized as a prepro-protein consisting of a putative Gla domain, two kringle domains, and a two-chain protease domain. Chicken and hagfish prothrombin share 51.6% amino acid sequence identity (313/627 residues). Both chicken and hagfish prothrombin are structurally very similar to human, bovine, rat, and mouse prothrombin and all six species share 41% amino acid sequence identity. Amino acid sequence alignments of human, bovine, rat, mouse, chicken, and hagfish prothrombin suggest that the thrombin B-chain and the propeptide-Gla domain are the regions most constrained for the common function(s) of vertebrate prothrombins.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Springer
    Journal of molecular evolution 37 (1993), S. 355-366 
    ISSN: 1432-1432
    Keywords: Genomic cloning ; DNA sequencing ; Multigene family ; S1 mapping ; Promoter region ; Gene expression ; Concerted evolution ; Repetitive DNA
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Cow stomach lysozyme genes have evolved in a mosaic pattern. The majority of the intronic and flanking sequences show an amount of sequence difference consistent with divergent evolution since duplication of the genes 40–50 million years ago. In contrast, exons 1, 2, and 4 and immediately adjacent intronic sequences differ little between genes and show evidence of recent concerted evolution. Exon 3 appears to be evolving divergently. The three characterized genes vary from 5.6 to 7.9 kilobases in length. Different distributions of repetitive DNA are found in each gene, which accounts for the majority of length differences between genes. The different distributions of repetitive DNA in each gene suggest the repetitive elements were inserted into each gene after the duplications that give rise to these three genes and provide additional support for divergent evolution for the majority of each gene. The observation that intronic and flanking sequences are evolving divergently suggests that the concerted evolution events involved in homogenizing the coding regions of lysozyme genes involve only one exon at a time. This model of concerted evolution would allow the shuffling of exon-sized pieces of information between genes, a phenomenon that may have aided in the early adaptive evolution of stomach lysozyme.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Springer
    Journal of molecular evolution 41 (1995), S. 299-312 
    ISSN: 1432-1432
    Keywords: Multigene family ; Gene duplication ; Concerted evolution ; Regulatory evolution ; Adaptive evolution ; Pseudogenes
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Recruitment of lysozyme to a digestive function in ruminant artiodactyls is associated with amplification of the gene. At least four of the approximately ten genes are expressed in the stomach, and several are expressed in nonstomach tissues. Characterization of additional lysozymelike sequences in the bovine genome has identified most, if not all, of the members of this gene family. There are at least six stomachlike lysozyme genes, two of which are pseudogenes. The stomach lysozyme pseudogenes show a pattern of concerted evolution similar to that of the functional stomach genes. At least four nonstomach lysozyme genes exist. The nonstomach lysozyme genes are not monophyletic. A gene encoding a tracheal lysozyme was isolated, and the stomach lysozyme of advanced ruminants was found to be more closely related to the tracheal lysozyme than to the stomach lysozyme of the camel or other nonstomach lysozyme genes of ruminants. The tracheal lysozyme shares with stomach lysozymes of advanced ruminants the deletion of amino acid 103, and several other adaptive sequence characteristics of stomach lysozymes. I suggest here that tracheal lysozyme has reverted from a functional stomach lysozyme. Tracheal lysozyme then represents a second instance of a change in lysozyme gene expression and function within ruminants.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    [s.l.] : Nature Publishing Group
    Nature 336 (1988), S. 429-430 
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] SIRá€"Brenner1 proposes that the last common ancestor to vertebrate serine proteases was a cysteine protease that existed billions of years ago, based on the observation that the active-site serine of some serine proteases is encoded by the codon TCN, whereas in others it is AGY. ...
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    Springer
    Journal of mammalian evolution 2 (1994), S. 37-55 
    ISSN: 1573-7055
    Keywords: mitochondrial DNA ; cetaceans ; tethytherians ; pinnipeds ; sirenians ; molecular phylogeny ; cytochromeb
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The DNA sequences of the mitochondrial cytochromeb gene of marine mammals (Cetacea, Pinnipedia, Sirenia) were compared with cytochromeb genes of terrestrial mammals including the semiaquatic hippopotamus. The comparison included 28 sequences, representing 22 families and 10 orders. The dugong (order Sirenia) sequence associated with that of the elephant, supporting the Tethytheria clade. The fin whale and dolphin (order Cetacea) sequences are more closely related to those of the artiodactyls, and the comparison suggests that the hippopotamus may be the extant artiodactyl species that is most closely related to the cetaceans. The seal sequence may be more closely related to those of artiodactyls, cetaceans, and perissodactyls than to tethytheres, rodents, lagomorphs, or primates. The cytochromeb proteins of mammals do not evolve at a uniform rate. Human and elephant cytochromeb amino acid sequences were found to evolve the most rapidly, while those of myomorph rodents evolved slowest. The cytochromeb of marine mammals evolves at an intermediate rate. The pattern of amino acid substitutions in marine mammals is similar to that of terrestrial mammals.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...