ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Stamford, Conn. [u.a.] : Wiley-Blackwell
    Polymer Engineering and Science 28 (1988), S. 592-604 
    ISSN: 0032-3888
    Keywords: Chemistry ; Chemical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: A computer controlled test procedure for evaluating mode I and mode II interlaminar fracture behavior was used in experiments with eight different resin matrix/graphite fiber composites. Four analytical methods for calculating fracture toughness were compared. These included an energy rate determination of the J-integral, a compliance calibration procedure, equations based on linear beam bending, and an Area method calculation. Methods that account for nonlinear material behavior, such as the J-integral, were needed for characterizing the systems with high fracture toughness. The ratio of mode II to mode I fracture toughness ranged from 1.5 to 8.0, depending on the material system. Finally, preliminary work with a technique for constant strain rate testing of mode I DCB specimens is presented.
    Additional Material: 18 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2013-08-31
    Description: The Structures Technology Program Office (STPO) at NASA LaRC has initiated development of a conceptual and preliminary designers' cost prediction model. The model will provide a technically sound method for evaluating the relative cost of different composite structural designs, fabrication processes, and assembly methods that can be compared to equivalent metallic parts or assemblies. The feasibility of developing cost prediction software in a modular form for interfacing with state-of-the-art preliminary design tools and computer aided design programs is being evaluated. The goal of this task is to establish theoretical cost functions that relate geometric design features to summed material cost and labor content in terms of process mechanics and physics. The output of the designers' present analytical tools will be input for the designers' cost prediction model to provide the designer with a database and deterministic cost methodology that allows one to trade and synthesize designs with both cost and weight as objective functions for optimization. This paper presents the team members, approach, goals, plans, and progress to date for development of COSTADE (Cost Optimization Software for Transport Aircraft Design Evaluation).
    Keywords: COMPOSITE MATERIALS
    Type: FAA, Ninth DOD(NASA)FAA Conference on Fibrous Composites in Structural Design, Volume 2; p 601-61
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2013-08-31
    Description: The purpose is to provide an end-user's perspective on the state of the art in life prediction and failure analysis by focusing on subsonic transport fuselage issues being addressed in the NASA/Boeing Advanced Technology Composite Aircraft Structure (ATCAS) contract and a related task-order contract. First, some discrepancies between the ATCAS tension-fracture test database and classical prediction methods is discussed, followed by an overview of material modeling work aimed at explaining some of these discrepancies. Finally, analysis efforts associated with a pressure-box test fixture are addressed, as an illustration of modeling complexities required to model and interpret tests.
    Keywords: STRUCTURAL MECHANICS
    Type: NASA. Langley Research Center, Computational Methods for Failure Analysis and Life Prediction; p 11-35
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2013-08-29
    Description: A conceptual and preliminary designers' cost prediction model has been initiated. The model will provide a technically sound method for evaluating the relative cost of different composite structural designs, fabrication processes, and assembly methods that can be compared to equivalent metallic parts or assemblies. The feasibility of developing cost prediction software in a modular form for interfacing with state of the art preliminary design tools and computer aided design programs is being evaluated. The goal of this task is to establish theoretical cost functions that relate geometric design features to summed material cost and labor content in terms of process mechanics and physics. The output of the designers' present analytical tools will be input for the designers' cost prediction model to provide the designer with a data base and deterministic cost methodology that allows one to trade and synthesize designs with both cost and weight as objective functions for optimization. The approach, goals, plans, and progress is presented for development of COSTADE (Cost Optimization Software for Transport Aircraft Design Evaluation).
    Keywords: COMPOSITE MATERIALS
    Type: Second NASA Advanced Composites Technology Conference; p 27-46
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-06-28
    Description: Boeing is studying the technologies associated with the application of composite materials to commercial transport fuselage structure under the NASA-sponsored contracts for Advanced Technology Composite Aircraft Structures (ATCAS) and Materials Development Omnibus Contract (MDOC). This report addresses the program activities related to structural performance of the selected concepts, including both the design development and subsequent detailed evaluation. Design criteria were developed to ensure compliance with regulatory requirements and typical company objectives. Accurate analysis methods were selected and/or developed where practical, and conservative approaches were used where significant approximations were necessary. Design sizing activities supported subsequent development by providing representative design configurations for structural evaluation and by identifying the critical performance issues. Significant program efforts were directed towards assessing structural performance predictive capability. The structural database collected to perform this assessment was intimately linked to the manufacturing scale-up activities to ensure inclusion of manufacturing-induced performance traits. Mechanical tests were conducted to support the development and critical evaluation of analysis methods addressing internal loads, stability, ultimate strength, attachment and splice strength, and damage tolerance. Unresolved aspects of these performance issues were identified as part of the assessments, providing direction for future development.
    Keywords: Composite Materials
    Type: NASA-CR-4732 , NAS 1.26:4732
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-06-28
    Description: The Advanced Technology Composite Aircraft Structures (ATCAS) program has studied transport fuselage structure with a large potential reduction in the total direct operating costs for wide-body commercial transports. The baseline fuselage section was divided into four 'quadrants', crown, keel, and sides, gaining the manufacturing cost advantage possible with larger panels. Key processes found to have savings potential include (1) skins laminated by automatic fiber placement, (2) braided frames using resin transfer molding, and (3) panel bond technology that minimized mechanical fastening. The cost and weight of the baseline fuselage barrel was updated to complete Phase B of the program. An assessment of the former, which included labor, material, and tooling costs, was performed with the help of design cost models. Crown, keel, and side quadrant cost distributions illustrate the importance of panel design configuration, area, and other structural details. Composite sandwich panel designs were found to have the greatest cost savings potential for most quadrants. Key technical findings are summarized as an introduction to the other contractor reports documenting Phase A and B work completed in functional areas. The current program status in resolving critical technical issues is also highlighted.
    Keywords: Composite Materials
    Type: NASA-CR-4734 , NAS 1.26:4734
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-06-28
    Description: This report documents preliminary design trades conducted under NASA contracts NAS1 18889 (Advanced Technology Composite Aircraft Structures, ATCAS) and NAS1-19349 (Task 3, Pathfinder Shell Design) for a subsonic wide body commercial aircraft fuselage side panel section utilizing composite materials. Included in this effort were (1) development of two complete design concepts, (2) generation of cost and weight estimates, (3) identification of technical issues and potential design enhancements, and (4) selection of a single design to be further developed. The first design concept featured an open-section stringer stiffened skin configuration while the second was based on honeycomb core sandwich construction. The trade study cost and weight results were generated from comprehensive assessment of each structural component comprising the fuselage side panel section from detail fabrication through airplane final assembly. Results were obtained in three phases: (1) for the baseline designs, (2) after global optimization of the designs, and (3) the results anticipated after detailed design optimization. A critical assessment of both designs was performed to determine the risk associated with each concept, that is the relative probability of achieving the cost and weight projections. Seven critical technical issues were identified as the first step towards side panel detailed design optimization.
    Keywords: Composite Materials
    Type: NASA-CR-4730 , NAS 1.26:4730
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-06-28
    Description: The goal of Boeing's Advanced Technology Composite Aircraft Structures (ATCAS) program was to develop the technology required for cost and weight efficient use of composite materials in transport fuselage structure. This contractor report describes results of material and process selection, development, and characterization activities. Carbon fiber reinforced epoxy was chosen for fuselage skins and stiffening elements and for passenger and cargo floor structures. The automated fiber placement (AFP) process was selected for fabrication of monolithic and sandwich skin panels. Circumferential frames and window frames were braided and resin transfer molded (RTM'd). Pultrusion was selected for fabrication of floor beams and constant section stiffening elements. Drape forming was chosen for stringers and other stiffening elements. Significant development efforts were expended on the AFP, braiding, and RTM processes. Sandwich core materials and core edge close-out design concepts were evaluated. Autoclave cure processes were developed for stiffened skin and sandwich structures. The stiffness, strength, notch sensitivity, and bearing/bypass properties of fiber-placed skin materials and braided/RTM'd circumferential frame materials were characterized. The strength and durability of cocured and cobonded joints were evaluated. Impact damage resistance of stiffened skin and sandwich structures typical of fuselage panels was investigated. Fluid penetration and migration mechanisms for sandwich panels were studied.
    Keywords: Composite Materials
    Type: NASA-CR-4731 , NAS 1.26:4731
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-06-28
    Description: Transport fuselage structures are designed to contain pressure following a large penetrating damage event. Application of composites to fuselage structures requires a data base and supporting analysis on tension damage tolerance. Tests with 430 fracture specimens were used to accomplish the following: (1) identify critical material and laminate variables affecting notch sensitivity, (2) evaluate composite failure criteria, and (3) recommend a screening test method. Variables studied included fiber type, matrix toughness, lamination manufacturing process, and intraply hybridization. The laminates found to have the lowest notch sensitivity were manufactured using automated tow placement. This suggests a possible relationship between the stress distribution and repeatable levels of material inhomogeneity that are larger than found in traditional tape laminates. Laminates with the highest notch sensitivity consisted of toughened matrix materials that were resistant to a splitting phenomena that reduces stress concentrations in load bearing plies. Parameters for conventional fracture criteria were found to increase with the crack length of the smallest notch sizes studied. Most materials and laminate combinations followed less than a square root singularity for the largest crack sizes studied. Specimen geometry, notch type, and notch size were evaluated in developing a screening test procedure. Results indicate that a range of notch sizes must be tested to determine notch sensitivity.
    Keywords: COMPOSITE MATERIALS
    Type: Second NASA Advanced Composites Technology Conference; p 197-238
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-06-28
    Description: Composite transport fuselage crown panel design and manufacturing plans were optimized to have projected cost and weight savings of 18 and 45 percent, respectively. These savings are close to those quoted as overall NASA Advanced Composite Technology (ACT) program goals. Three local optimization tasks were found to influence the cost and weight of fuselage crown panels. The effects are summarized of each task and the task associated with a design cost model is described in detail. Studies were performed to evaluate the relationship between manufacturing cost and design details. A design tool was developed to aid in these studies. The development of the design tool included combining cost and performance constraints with a random search optimization algorithm. The resulting software was used in a series of optimization studies that evaluated the sensitivity of design variables, guidelines, criteria, and material selection on cost. The effect of blending adjacent design points in a full scale panel subjected to changing load distributions and local variations was shown to be important. Technical issues and directions for future work were identified.
    Keywords: COMPOSITE MATERIALS
    Type: NASA. Langley Research Center, Second NASA Advanced Composites Technology Conference; p 243-262
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...