ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Collection
Publisher
Language
  • 1
    Publication Date: 2011-03-07
    Description: A regional probabilistic model for the estimation of medium-high return period flood quantiles is presented. The model is based on the use of theoretically derived probability distributions of annual maximum flood peaks (DDF). The general model is called TCIF (Two-Component IF model) and encompasses two different threshold mechanisms associated with ordinary and extraordinary events, respectively. Based on at-site calibration of this model for 33 gauged sites in Southern Italy, a regional analysis is performed obtaining satisfactory results for the estimation of flood quantiles for return periods of technical interest, thus suggesting the use of the proposed methodology for the application to ungauged basins. The model is validated by using a jack-knife cross-validation technique taking all river basins into consideration.
    Print ISSN: 1561-8633
    Electronic ISSN: 1684-9981
    Topics: Geography , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2009-06-25
    Description: In the present work, the role played by vegetation parameters, necessary to the hydrological distributed modeling, is investigated focusing on the correct use of remote sensing products for the evaluation of hydrological losses in the soil water balance. The research was carried out over a medium-sized river basin in Southern Italy, where the vegetation status is characterised through a data-set of multi-temporal NDVI images. The model adopted uses one layer of vegetation whose status is defined by the Leaf Area Index (LAI), which is often obtained from NDVI images. The inherent problem is that the vegetation heterogeneity – including soil disturbances – has a large influence on the spectral bands and so the relation between LAI and NDVI is not unambiguous. We present a rationale for the basin scale calibration of a non-linear NDVI-LAI regression, based on the comparison between NDVI values and literature LAI estimations of the vegetation cover in recognized landscape elements of the study catchment. Adopting a process-based model (DREAM) with a distributed parameterisation, the influence of different NDVI-LAI regression models on main features of water balance predictions is investigated. The results show a significant sensitivity of the hydrological losses and soil water regime to the alternative LAI estimations. These crucially affects the model performances especially in low-flows simulation and in the identification of the intermittent regime.
    Print ISSN: 1561-8633
    Electronic ISSN: 1684-9981
    Topics: Geography , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2011-09-22
    Description: The accuracy of rainfall predictions provided by climate models is crucial for the assessment of climate change impacts on hydrological processes. In fact, the presence of bias in downscaled precipitation may produce large bias in the assessment of soil moisture dynamics, river flows and groundwater recharge. In this study, a comparison between statistical properties of rainfall observations and model control simulations from a Regional Climate Model (RCM) was performed through a robust and meaningful representation of the precipitation process. The output of the adopted RCM was analysed and re-scaled exploiting the structure of a stochastic model of the point rainfall process. In particular, the stochastic model is able to adequately reproduce the rainfall intermittency at the synoptic scale, which is one of the crucial aspects for the Mediterranean environments. Possible alteration in the local rainfall regime was investigated by means of the historical daily time-series from a dense rain-gauge network, which were also used for the analysis of the RCM bias in terms of dry and wet periods and storm intensity. The result is a stochastic scheme for bias-correction at the RCM-cell scale, which produces a realistic representation of the daily rainfall intermittency and precipitation depths, though a residual bias in the storm intensity of longer storm events persists.
    Print ISSN: 1561-8633
    Electronic ISSN: 1684-9981
    Topics: Geography , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2008-06-13
    Description: This paper investigates the impact of various vegetation types on water balance variability in semi-arid Mediterranean landscapes, and the different strategies they may have developed to succeed in such water-limited environments. The existence of preferential associations between soil water holding capacity and vegetation species is assessed through an extensive soil geo-database focused on a study region in Southern Italy. Water balance constraints that dominate the organization of landscapes are investigated by a conceptual bucket approach. The temporal water balance dynamics are modelled, with vegetation water use efficiency being parameterized through the use of empirically obtained crop coefficients as surrogates of vegetation behavior in various developmental stages. Sensitivity analyses with respect to the root zone depth and soil water holding capacity are carried out with the aim of explaining the existence of preferential soil-vegetation associations and, hence, the spatial distribution of vegetation types within the study region. Based on these sensitivity analyses the degrees of suitability and adaptability of each vegetation type to parts of the study region are explored with respect of the soil water holding capacity, and the model results were found consistent with the observed affinity patterns.
    Print ISSN: 1027-5606
    Electronic ISSN: 1607-7938
    Topics: Geography , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2012-03-22
    Description: Understanding the spatial variability of key parameters of flood probability distributions represents a strategy to provide insights on hydrologic similarity and building probabilistic models able to reduce the uncertainty in flood prediction in ungauged basins. In this work, we exploited the theoretically derived distribution of floods model TCIF (Two Component Iacobellis and Fiorentino model; Gioia et al., 2008), based on two different threshold mechanisms associated to ordinary and extraordinary events. The model is based on the hypotheses that ordinary floods are generally due to rainfall events exceeding a constant infiltration rate in a small source area, while the so-called outlier events responsible for the high skewness of flood distributions are triggered when severe rainfalls exceed a storage threshold over a large portion of the basin. Within this scheme, a sensitivity analysis was performed with respect to climatic and geomorphologic parameters in order to analyze the effects on the skewness coefficient and provide insights in catchment classification and process conceptualization. The analysis was conducted to investigate the influence on flood distribution of physical factors such as rainfall intensity, basin area, and particular focus on soil behavior.
    Print ISSN: 1027-5606
    Electronic ISSN: 1607-7938
    Topics: Geography , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2002-04-30
    Description: The variability of the second order moments of flood peaks with respect to geomorphoclimatic basin characteristics was investigated. In particular, the behaviour of the coefficient of variation (Cv) of the series of annual maximum floods was analysed with respect to its dependence on physically consistent quantities. The results achieved were in fairly good agreement with real world observed characteristics and interesting insights on the relationship between Cv and basin size were found. It appears that Cv is controlled mainly by the climate and by some water loss features. Many observations reported in the literature show a decrease of Cv with basin area A, usually ascribed to the limited spatial extent of extreme events, which leads to a decrease with area of the Cv of areal rainfall intensity. An increase of Cv with the area is also sometimes observed for small basins. Such different behaviours were accounted for by the concurrent effect on two parameters that affect the Cv (A) relationship, representative of the way rainfall losses and effective rainfall intensity scale with the basin area. Keywords: floods, climate, coefficient of variation, scaling.
    Print ISSN: 1027-5606
    Electronic ISSN: 1607-7938
    Topics: Geography , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2008-04-01
    Description: Runoff generation during extreme floods usually occurs whenever rainfall forcing exceeds a given threshold. In many cases, different thresholds may be identified as responsible of the hydrological losses during ordinary events or extraordinary events at the basin scale. Such thresholds are shown to be related to the dynamics of soil saturation of the river basin and to account for the high skewness of their annual flood distributions. In basins where ordinary floods are mostly due to a small portion of the surface which is particularly prone to produce runoff, depending on permeability of a river basin and its antecedent soil moisture conditions, severe rainfall may exceed a basin-wide soil storage threshold and produce the so-called outlier events responsible of the high skewness of floods distributions. In this context, the derived theoretical model based on the concept of variable contributing area to peak flow proposed by Iacobellis and Fiorentino (2000) was generalized with the aim of incorporating such kind of dynamics in the description of the phenomena. The work produced a new formulation of the derived distribution where the two runoff components are explicitly considered. The present work was validated by using as test site a group of basins belonging to Southern Italy and characterized by flood distributions with high skewness. The application of the proposed model provided a good fitting to the observed distributions. Moreover, model parameters were found to be strongly related to physiographic basin characteristics giving consistency to the modelling assumptions.
    Print ISSN: 1812-2108
    Electronic ISSN: 1812-2116
    Topics: Geography , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2011-06-14
    Description: Understanding the spatial variability of key parameters of flood probability distributions represents a strategy to provide insights on hydrologic similarity and building probabilistic models able to reduce the uncertainty in flood prediction in ungauged basins. In this work, we exploited the theoretically derived distribution of floods TCIF (Gioia et al., 2008), based on two different threshold mechanisms associated respectively to ordinary and extraordinary events. The model is based on the hypotheses that ordinary floods are generally due to rainfall events exceeding a threshold infiltration rate in a small source area, while the so-called outlier events, responsible of the high skewness of flood distributions, are triggered when severe rainfalls exceed a storage threshold over a large portion of the basin. Within this scheme, a sensitivity analysis was performed in order to analyze the effects of climatic and geomorphologic parameters on the skewness coefficient. In particular, the analysis was conducted investigating the influence on flood distribution of physical factors such as rainfall intensity, soil infiltration capacity, and basin area, in order to provide insights in catchment classification and process conceptualization.
    Print ISSN: 1812-2108
    Electronic ISSN: 1812-2116
    Topics: Geography , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2007-10-19
    Description: This paper investigates the impact of various vegetation types on water balance variability in semi-arid Mediterranean landscapes, and the different strategies they may have developed to succeed in such water-limited environments. Water balance constraints are assumed to dominate the organization of landscapes and a conceptual bucket approach is adopted to model the temporal water balance dynamics, with vegetation water use efficiency being parameterized through the use of empirically obtained crop coefficients as surrogates of vegetation behavior in various developmental stages. Sensitivity analyses with respect to the root zone depth and soil water holding capacity are carried out with the aim of investigating the existence of preferential soil-vegetation associations and, hence, the spatial distribution of vegetation types within the study region. Based on these sensitivity analyses the degrees of suitability and adaptability of each vegetation type to parts of the study region are explored with respect of the soil water holding capacity, and the model results were found to be able to explain the observed affinity patterns. Finally, the existence of such preferential association between soil water holding capacity and vegetation species is verified through an extensive soil survey available in the study region.
    Print ISSN: 1812-2108
    Electronic ISSN: 1812-2116
    Topics: Geography , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2006-03-14
    Description: In the present research, we exploited a continuous hydrological simulation to investigate on key variables responsible of flood peak formation. With this purpose, a distributed hydrological model (DREAM) is used in cascade with a rainfall generator (IRP-Iterated Random Pulse) to simulate a large number of extreme events providing insight into the main controls of flood generation mechanisms. Investigated variables are those used in theoretically derived probability distribution of floods based on the concept of partial contributing area (e.g. Iacobellis and Fiorentino, 2000). The continuous simulation model is used to investigate on the hydrological losses occurring during extreme events, the variability of the source area contributing to the flood peak and its lag-time. Results suggest interesting simplification for the theoretical probability distribution of floods according to the different climatic and geomorfologic environments. The study is applied to two basins located in Southern Italy with different climatic characteristics.
    Print ISSN: 1680-7340
    Electronic ISSN: 1680-7359
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...