ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2011-03-12
    Description: Partitioning of chromatids during mitosis requires that chromosome compaction and spindle length scale appropriately with each other. However, it is not clear whether chromosome condensation and spindle elongation are linked. Here, we find that yeast cells could cope with a 45% increase in the length of their longest chromosome arm by increasing its condensation. The spindle midzone, aurora/Ipl1 activity, and Ser10 of histone H3 mediated this response. Thus, the anaphase spindle may function as a ruler to adapt the condensation of chromatids, promoting their segregation regardless of chromosome or spindle length.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Neurohr, Gabriel -- Naegeli, Andreas -- Titos, Iris -- Theler, Dominik -- Greber, Basil -- Diez, Javier -- Gabaldon, Toni -- Mendoza, Manuel -- Barral, Yves -- New York, N.Y. -- Science. 2011 Apr 22;332(6028):465-8. doi: 10.1126/science.1201578. Epub 2011 Mar 10.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Centre for Genomic Regulation (CRG), Barcelona, Spain.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21393511" target="_blank"〉PubMed〈/a〉
    Keywords: Aldose-Ketose Isomerases/genetics ; *Anaphase ; Aurora Kinases ; Chromosome Segregation ; Chromosomes, Fungal/genetics/*physiology ; Histones/metabolism ; Intracellular Signaling Peptides and Proteins/genetics/metabolism ; Microtubule-Associated Proteins/genetics/metabolism ; Mutation ; Protein-Serine-Threonine Kinases/genetics/metabolism ; Saccharomyces cerevisiae/genetics/*physiology ; Saccharomyces cerevisiae Proteins/genetics/metabolism ; Spindle Apparatus/*physiology/*ultrastructure
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2012-02-22
    Description: We investigated aerosol optical properties, mass concentration and chemical composition over a 1 year period (from March 2006 to February 2007) at an urban site in Southern Spain (Granada, 37.18°N, 3.58°W, 680 m above sea level). Light-scattering and absorption measurements were performed using an integrating nephelometer and a MultiAngle Absorption Photometer (MAAP), respectively, with no aerosol size cut-off and without any conditioning of the sampled air. PM10 and PM1 (ambient air levels of atmospheric particulate matter finer than 10 and 1 microns) were collected with two high volume samplers, and the chemical composition was investigated for all samples. Relative humidity (RH) within the nephelometer was below 50% and the weighting of the filters was also at RH of 50%. PM10 and PM1 mass concentrations showed a mean value of 44 ± 19 μg/m3 and 15 ± 7 μg/m3, respectively. The mineral matter was the major constituent of the PM10–1 fraction (contributing more than 58%) whereas organic matter and elemental carbon (OM+EC) contributed the most to the PM1 fraction (around 43%). The absorption coefficient at 550 nm showed a mean value of 24 ± 9 Mm−1 and the scattering coefficient at 550 nm presented a mean value of 61 ± 25 Mm−1, typical of urban areas. Both the scattering and the absorption coefficients exhibited the highest values during winter and the lowest during summer, due to the increase in the anthropogenic contribution and the lower development of the convective mixing layer during winter. A very low mean value of the single scattering albedo of 0.71 ± 0.07 at 550 nm was calculated, suggesting that urban aerosols in this site contain a large fraction of absorbing material. Mass scattering and absorption efficiencies of PM10 particles exhibited larger values during winter and lower during summer, showing a similar trend to PM1 and opposite to PM10–1. This seasonality is therefore influenced by the variations on PM composition. In addition, the mass scattering efficiency of the major aerosol constituents in PM10 were also calculated applying the multilinear regression (MLR) analysis. Among all of them, the most efficient in terms of scattering was sulfate ion (7 ± 1 m2g−1) while the least efficient was the mineral matter (0.2 ± 0.3 m2g−1). On the other hand, we found that the absorption process was mainly dominated by carbonaceous particles.
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...