ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2008-07-26
    Description: Chromosome segregation, transcriptional regulation, and repair of DNA double-strand breaks require the cohesin protein complex. Cohesin holds the replicated chromosomes (sister chromatids) together to mediate sister chromatid cohesion. The mechanism of how cohesion is established is unknown. We found that in budding yeast, the head domain of the Smc3p subunit of cohesin is acetylated by the Eco1p acetyltransferase at two evolutionarily conserved residues, promoting the chromatin-bound cohesin to tether sister chromatids. Smc3p acetylation is induced in S phase after the chromatin loading of cohesin and is suppressed in G(1) and G(2)/M. Smc3 head acetylation and its cell cycle regulation provide important insights into the biology and mechanism of cohesion establishment.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Unal, Elcin -- Heidinger-Pauli, Jill M -- Kim, Woong -- Guacci, Vincent -- Onn, Itay -- Gygi, Steven P -- Koshland, Douglas E -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2008 Jul 25;321(5888):566-9. doi: 10.1126/science.1157880.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute and Department of Embryology, Carnegie Institution, 3520 San Martin Drive, Baltimore, MD 21218, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18653894" target="_blank"〉PubMed〈/a〉
    Keywords: Acetylation ; Acetyltransferases/genetics/*metabolism ; Amino Acid Sequence ; Amino Acid Substitution ; Cell Cycle Proteins/chemistry/genetics/*metabolism ; Cell Division ; Chondroitin Sulfate Proteoglycans/chemistry/genetics/*metabolism ; Chromatids/*physiology ; Chromatin/metabolism ; Chromosomal Proteins, Non-Histone/chemistry/genetics/*metabolism ; Chromosomes, Fungal/*physiology ; G1 Phase ; G2 Phase ; Immunoprecipitation ; Lysine/metabolism ; Molecular Sequence Data ; Mutation ; Nuclear Proteins/genetics/*metabolism ; Protein Structure, Tertiary ; S Phase ; Saccharomyces cerevisiae/genetics/growth & development/*physiology ; Saccharomyces cerevisiae Proteins/chemistry/genetics/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2016-07-28
    Description: The cohesin complex plays an important role in sister chromatin cohesion. Cohesin's core is composed of two structural maintenance of chromosome (SMC) proteins, called Smc1 and Smc3. SMC proteins are built from a globular hinge domain, a rod-shaped domain composed of long anti-parallel coiled-coil (CC), and a second globular adenosine triphosphatase domain called the head. The functions of both head and hinge domains have been studied extensively, yet the function of the CC region remains elusive. We identified a mutation in the CC of smc3 (L217P) that disrupts the function of the protein. Cells carrying the smc3 -L217P allele have a strong cohesion defect and complexes containing smc3-L217P are not loaded onto the chromosomes. However, the mutation does not affect inter-protein interactions in either the core complex or with the Scc2 loader. We show by molecular dynamics and biochemistry that wild-type Smc3 can adopt distinct conformations, and that adenosine triphosphate (ATP) induces the conformational change. The L217P mutation restricts the ability of the mutated protein to switch between the conformations. We suggest that the function of the CC is to transfer ATP binding/hydrolysis signals between the head and the hinge domains. The results provide a new insight into the mechanism of cohesin activity.
    Print ISSN: 0305-1048
    Electronic ISSN: 1362-4962
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2011-06-13
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2016-08-10
    Description: Cohesin is a multi-subunit complex that plays an essential role in genome stability. Initial association of cohesin with chromosomes requires the loader—a heterodimer composed of Scc4 and Scc2 . However, very little is known about the loader’s mechanism of action. In this study, we performed a genetic screen to identify functional domains in the Scc4 subunit of the loader. We isolated scc4 mutant alleles that, when overexpressed, have a dominant negative effect on cell viability. We defined a small region in the N terminus of Scc4 that is dominant negative when overexpressed, and on which Scc2 / Scc4 activity depends. When the mutant alleles are expressed as a single copy, they are recessive and do not support cell viability, cohesion, cohesin loading or Scc4 chromatin binding. In addition, we show that the mutants investigated reduce, but do not eliminate, the interaction of Scc4 with either Scc2 or cohesin. However, we show that Scc4 cannot bind cohesin in the absence of Scc2 . Our results provide new insight into the roles of Scc4 in cohesin loading, and contribute to deciphering the loading mechanism.
    Electronic ISSN: 2160-1836
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2011-07-27
    Description: Cohesin is a member of the Smc family of protein complexes that mediates higher-order chromosome structure by tethering different regions of chromatin. We present a new in vitro system that assembles cohesin-DNA complexes with in vivo properties. The assembly of these physiological salt-resistant complexes requires the cohesin holo-complex, its ability to bind ATP, the cohesin loader Scc2p and a closed DNA topology. Both the number of cohesin molecules bound to the DNA substrate and their distribution on the DNA substrate are limited. Cohesin and Scc2p bind preferentially to cohesin associated regions (CARs), DNA sequences with enriched cohesin binding in vivo. A subsequence of CARC1 promotes cohesin binding to neighboring sequences within CARC1. The enhancer-like function of this sequence is validated by in vivo deletion analysis. By demonstrating the physiological relevance of these in vitro assembled cohesin-DNA complexes, we establish our in vitro system as a powerful tool to elucidate the mechanism of cohesin and other Smc complexes.
    Keywords: Inaugural Articles
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2000-09-01
    Print ISSN: 1469-221X
    Electronic ISSN: 1469-3178
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...